1
|
Yan P, Huang J, Wu G, Zhang Y, Mo Z, Xu K, Ling M, Dong S, Xu L, Li H. Construction of a In 2O 3/ultrathin g-C 3N 4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon. J Colloid Interface Sci 2025; 679:653-661. [PMID: 39388951 DOI: 10.1016/j.jcis.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated In2O3 (In2O3/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance. The creation of internal electric field at interface ensures stable carrier transport. Additionally, ultrathin CNS structure can effectively shorten the transport path of carriers. The close coating of In2O3 and CNS promotes the transfer of charge. The synergistic effects amplify the sensor's response, ultimately enabling the effective detection of DZN residue over a wide detection range (0.98 ∼ 980.0 pg mL-1), a low detection limit (0.33 pg mL-1, S/N = 3) and excellent accuracy in practical application (RSD < 5 %). This work provides a reference for the construction of a new S-type heterojunction-based PEC sensor.
Collapse
Affiliation(s)
- Pengcheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Yongkang Jiaxiao Electric Welding Automation Equipment Co., Ltd, Jinhua 321300, Zhejiang, PR China
| | - Jing Huang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanyu Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yu Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhao Mo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224007, Jiangsu, PR China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sihua Dong
- YTO Group Corporation Dongfanghong (Henan) Agricultural Service Technology Co., Ltd., Luoyang 471033, PR China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
2
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
3
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
4
|
Cui X, Geng H, Zhang H, Sun X, Shang L, Ma R, Jia L, Li C, Zhang W, Wang H. A perylene diimide electrochemical probe with persulfate as a signal enhancer for dopamine sensing. Analyst 2024; 149:917-924. [PMID: 38190154 DOI: 10.1039/d3an01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dopamine (DA) is an important biomarker related to parkinsonism, schizophrenia and renal disease. Traditional electrochemical sensors for DA were based on the direct electrochemical oxidation of DA. In this paper, we report a new sensing strategy using N,N'-di(trimethylaminoethyl)perylene diimide (TMPDI) as an electrochemical probe and K2S2O8 as a signal enhancer for DA detection between 0 and -0.7 V with the DPV technique. MoS2 nanoflowers prepared by the hydrothermal method were used as a nanocarrier to load TMPDI. The reduction current of TMPDI was found to show a stepwise and significant increase at -0.24 V with the increase of concentration of K2S2O8 due to the continuous cycle of TMPDI molecules' electrochemical reduction and chemical oxidation. The presence of DA caused a large decrease of the reduction current of TMPDI due to the synergistic interaction of the competitive consumption of DA for K2S2O8 and the blocking effect of polyDA adhering to the electrode surface. The decreased current exhibited a linear response for DA from 10 pM to 100 μM with a detection limit of 4.1 pM and the proposed sensor showed high selectivity and excellent feasibility in human urine/serum sample detection.
Collapse
Affiliation(s)
- Xiaomin Cui
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Huiying Geng
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Hong Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Xinyang Sun
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Rongna Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Liping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Chuan Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
5
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
6
|
Negahdary M, Angnes L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023; 259:124548. [PMID: 37062088 DOI: 10.1016/j.talanta.2023.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
New technologies have provided suitable tools for rapid diagnosis of cancer which can reduce treatment costs and even increase patients' survival rates. Recently, the development of electrochemical aptamer-based nanobiosensors has raised great hopes for early, sensitive, selective, and low-cost cancer diagnosis. Here, we reviewed the flagged recent research (2021-2023) developed as a series of biosensors equipped with nanomaterials and aptamer sequences (nanoaptasensors) to diagnose/prognosis of various types of cancers. Equipping these aptasensors with nanomaterials and using advanced biomolecular technologies have provided specified biosensing interfaces for more optimal and reliable detection of cancer biomarkers. The primary intention of this review was to present and categorize the latest innovations used in the design of these diagnostic tools, including the hottest surface modifications and assembly of sensing bioplatforms considering diagnostic mechanisms. The main classification is based on applying various nanomaterials and sub-classifications considered based on the type of analyte and other vital features. This review may help design subsequent electrochemical aptasensors. Likewise, the up-to-date status, remaining limitations, and possible paths for translating aptasensors to clinical cancer assay tools can be clarified.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Tang X, Wang H, Zhang X, Mao C, Wu L, Zhao L. A photoelectrochemical immunosensing platform for ultrasensitive detection of alpha-fetoprotein based on a signal amplification strategy. Bioelectrochemistry 2023; 150:108351. [PMID: 36525772 DOI: 10.1016/j.bioelechem.2022.108351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
For the first time, a PEC immunosensor based on a signal amplification strategy is successfully constructed to quantitatively detect alpha-fetoprotein in serum sample. Three favorable factors explain the ultra-high sensitivity of this method. Firstly, compared with pure BiPO4, the BiPO4/BiOBr heterojunction has a narrower band gap, which expands the light absorption range and enables the light energy to be fully utilized. Secondly, the separation of photogenerated electrons and hole pairs during PEC detection is due to the efficient matching of energy levels among BiPO4, BiOBr and CdS, inhibiting the recombination of photogenerated electrons, which improves the performance of PEC immunosensor. Thirdly, due to the presence of CdS, the light absorption capability of the sensor is enhanced, more electron-hole pairs are generated, and the photocurrent signal is increase. Under the optimal conditions, the PEC immunosensor shows a wide linear range of 0.001-1000 ng/mL for AFP and a low detection limit of 0.82 pg/mL. The PEC immunosensor developed in this experiment has excellent reproducibility, stability and high sensitivity, and also achieves satisfactory results in the analysis of human serum samples, establishing a new analytical method for biomarker detection.
Collapse
Affiliation(s)
- Ximing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Xinan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Chunling Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Lei Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China.
| |
Collapse
|
8
|
Wei JJ, Wang GQ, Zheng JY, Yang HY, Wang AJ, Mei LP, Feng JJ, Cheang TY. Z-scheme Cu2MoS4/CdS/In2S3 nanocages heterojunctions-based PEC aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with hollow PtPd–CoSnO3 nanozyme. Biosens Bioelectron 2023; 230:115293. [PMID: 37028001 DOI: 10.1016/j.bios.2023.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Fumonisin B1 (FB1), the most prevalent and highest toxicity mycotoxins among fumonisins family, poses threats to human especially children and infants even at a trace level. Therefore, its facile and sensitive detection is of importance. Herein, Z-scheme Cu2MoS4/CdS/In2S3 nanocage-like heterojunctions (labeled Cu2MoS4/CdS/In2S3) were synthesized, whose photoelectrochemical (PEC) property and electron transfer mechanism were strictly investigated. The Cu2MoS4/CdS/In2S3 behaved as photoactive substrate for building a PEC sensing platform for detection of FB1, integrated with PtPd alloy modified hollow CoSnO3 nanoboxes (labeled PtPd-CoSnO3) nanozyme. By virtue of the stronger affinity between the target FB1 and its aptamer (FB1-Apt), the photocurrent was recovered by releasing the CoSnO3-PtPd3 modified FB1-Apt (FB1-Apt/PtPd-CoSnO3) from the photoanode, which can terminate the catalytic precipitation reaction for its peroxidase-like property. The resultant PEC aptasensor exhibited a wider dynamic linear range from 1 × 10-4 to 1 × 102 ng mL-1 with a lower limit of detection (0.0723 pg mL-1). Thus, this research provides a feasible PEC sensing platform for routine analysis of other mycotoxins in practice.
Collapse
|
9
|
Wang Q, Sun X, Liu C, Wang C, Zhao W, Zhu Z, Ma S, Zhang S. Current development of stretchable self-powered technology based on nanomaterials toward wearable biosensors in biomedical applications. Front Bioeng Biotechnol 2023; 11:1164805. [PMID: 37113667 PMCID: PMC10126507 DOI: 10.3389/fbioe.2023.1164805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In combination with the growing fields of artificial intelligence and Internet-of-things (IoT), the innovation direction of next-generation biosensing systems is toward intellectualization, miniaturization, and wireless portability. Enormous research efforts have been made in self-powered technology due to the gradual decline of traditional rigid and cumbersome power sources in comparison to wearable biosensing systems. Research progress on various stretchable self-powered strategies for wearable biosensors and integrated sensing systems has demonstrated their promising potential in practical biomedical applications. In this review, up-to-date research advances in energy harvesting strategies are discussed, together with a future outlook and remaining challenges, shedding light on the follow-up research priorities.
Collapse
Affiliation(s)
- Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Sainan Ma
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Sheng Zhang, ; Sainan Ma,
| | - Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Sainan Ma,
| |
Collapse
|
10
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Detection of prostate cancer biomarkers via a SERS-based aptasensor. Biosens Bioelectron 2022; 216:114660. [DOI: 10.1016/j.bios.2022.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
12
|
Zhao S, Huang J, Li D, Yang L. Aptamer-based chemiluminescent optical fiber immunosensor with enhanced signal amplification for ultrasensitive detection of tumor biomarkers. Biosens Bioelectron 2022; 214:114505. [DOI: 10.1016/j.bios.2022.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
|
13
|
Zheng Y, Wang J, Chen G, Wang M, Chen T, Ke Q, Huang Y, Cai F, Huang R, Fan C. DNA walker-amplified signal-on electrochemical aptasensors for prostate-specific antigen coupling with two hairpin DNA probe-based hybridization reaction. Analyst 2022; 147:1923-1930. [PMID: 35384954 DOI: 10.1039/d2an00327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical aptasensing systems have been developed for screening low-abundance disease-related proteins, but most of them involve multiple washings and multi-step separation during measurements, and thus are disadvantageous for routine use. In this work, an innovative and simple electrochemical aptasensing platform was designed for the voltammetric detection of prostate-specific antigen (PSA) in biological fluids without any washing and separation steps. This system mainly included a PSA-specific aptamer, a DNA walker and two hairpin DNA probes (i.e., thiolated hairpin DNA1 and ferrocene-labeled hairpin DNA2). Introduction of target PSA caused the release of the DNA walker from a partially complementary aptamer/DNA walker hybridization strand. The dissociated DNA walker opened the immobilized hairpin DNA1 on the electrode, accompanying subsequent displacement reaction with hairpin DNA2, thus resulting in the DNA walker step-by-step reaction with numerous hairpin DNA1 probes on the sensing interface. In this case, numerous ferrocene molecules were close to the electrode to amplify the voltammetric signal within the applied potentials. All reactions and electrochemical measurements including the target/aptamer reaction and hybridization chain reaction were implemented in the same detection cell. Under optimal conditions, the fabricated electrochemical aptasensor gave good voltammetric responses relative to the PSA concentrations within the range of 0.001-10 ng mL-1 at an ultralow detection limit of 0.67 pg mL-1. A good reproducibility with batch-to-batch errors was acquired for target PSA down to 11.5%. Non-target analytes did not interfere with the voltammetric signals of the electrochemical aptasensors. Meanwhile, 15 human serum specimens were measured with electrochemical aptasensors, and displayed well-matched results in comparison with the referenced human PSA enzyme-linked immunosorbant assay (ELISA) method. Significantly, this method provides a new horizon for the quantitative monitoring of low-concentration biomarkers or nucleic acids.
Collapse
Affiliation(s)
- Yuyu Zheng
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Jinpeng Wang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Genwang Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Meie Wang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Tebin Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Qiaohong Ke
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Yajun Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| |
Collapse
|