1
|
Khan S, Rathod P, Gupta VK, Khedekar PB, Chikhale RV. Evolution and Impact of Nucleic Acid Amplification Test (NAAT) for Diagnosis of Coronavirus Disease. Anal Chem 2024; 96:8124-8146. [PMID: 38687959 PMCID: PMC11112543 DOI: 10.1021/acs.analchem.3c05225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Sumbul
Fatma Khan
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Priyanka Rathod
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Vivek K. Gupta
- Department
of Biochemistry, National JALMA Institute
for Leprosy & Other Mycobacterial Diseases (ICMR), Agra -282004, India
| | - Pramod B. Khedekar
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Rupesh V. Chikhale
- UCL
School of Pharmacy, Department of Pharmaceutical and Biological Chemistry, University College London, London WC1N 1AX, United Kingdom
| |
Collapse
|
2
|
Ye J, Huang W, Jia X, Song H, Zhou Y, Yuan R, Xu W. Short-stranded DNA segment-modulated LAMP/H + as signal transducer to guide CHA-cooperated amplifiable electrochemical biosensing. Anal Chim Acta 2024; 1295:342329. [PMID: 38355233 DOI: 10.1016/j.aca.2024.342329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Modulating loop-mediated isothermal amplification (mLAMP) by short-stranded DNA segment trigger (T) to generate byproducts H+ ions (mLAMP/H+) as signal transducer is intriguing for developing catalytic hairpin assembly (CHA)-cooperated amplifiable electrochemical biosensors. This would be a big challenge for traditional LAMP that is basically suitable for amplifying long-stranded oligonucleotides up to 200-300 nt. To address this inherent limitation of traditional LAMP, many researchers have put in efforts to explore improvements in this that would allow LAMP to be used for a wider range of target species amplification. RESULTS Here in this work, we are inspired to explore two-step loop-mediated amplification, firstly forming T-activated double-loop dumbbell structure (DLDS) intermediate by a recognition hairpin and a hairpin precursor, and next DLDS-guided mLAMP process with the aid of two primers to yield mLAMP/H+ during successive DNA incorporation via nucleophilic attacking interaction. To manipulate the mLAMP/H+-directed transduction of input T, a pH-responsive triplex strand is designed with the ability of self-folding in Hoogsteen structure at slightly acidic conditions, resulting in the dehybridization of a fuel strand (FS) to participate in CHA between two hairpins on the modified electrode surface, in which FS is repetitively displaced and recycled to fuel the progressive CHA events. In the as-assembled dsDNA complexes, numerous electroactive ferrocene labels are immobilized in the electrode sensing interface, thereby generating significantly amplified electrochemical current signal that can sense the presented and varied T. SIGNIFICANCE It is clear that we have creatively constructed a unique electrochemical biosensor for disease detection. Benefited from the rational combination of mLAMP and CHA, our electrochemical strategy is highly sensitive, specific and simplified, and would provide a new paradigm to construct various mLAMP/H+-based biosensors for other short-stranded DNA or microRNAs markers.
Collapse
Affiliation(s)
- Jingjing Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Weixiang Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinyue Jia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Honglin Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yifu Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Aksono EB, Lamid M, Rimayanti R, Hamid IS, Effendi MH, Rantam FA, Widjiati W, Mufasirin M, Puspitasari H, Fitria M, Fajar NS, Suwanti LT, Nusdianto N, Zaidan AH, Kanai Y, Sucipto TH. Designing one-step reverse transcriptase loop-mediated isothermal amplification for serotype O foot-and-mouth disease virus detection during the 2022 outbreak in East Java, Indonesia. Vet World 2023; 16:1889-1896. [PMID: 37859973 PMCID: PMC10583884 DOI: 10.14202/vetworld.2023.1889-1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Various methods can detect foot-and-mouth disease (FMD) in cows, but they necessitate resources, time, costs, laboratory facilities, and specific clinical specimen submission, often leading to FMD virus (FMDV) diagnosis delays. The 2022 FMD outbreak in East Java, Indonesia, highlighted the need for an easy, inexpensive, rapid, and accurate detection approach. This study aims to devise a one-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) technique and phylogenetic analysis to detect the serotype O FMDV outbreak in East Java. Materials and Methods Swab samples were collected from the foot vesicles, nasal secretions, and saliva of five suspected FMDV-infected cows in East Java between June and July 2022. The RT-LAMP design used hydroxy naphthol blue dye or SYBR Green I dye, with confirmatory analysis through reverse transcriptase polymerase chain reaction (RT-PCR) targeting 249 base pairs. PCR products underwent purification, sequencing, and nucleotide alignment, followed by phylogenetic analysis. Results The RT-LAMP method using hydroxy naphthol blue dye displayed a positive reaction through a color shift from purple to blue in the tube. Naked-eye observation in standard light or ultraviolet (UV) light at 365 nm, with SYBR Green I stain, also revealed color change. Specifically, using SYBR Green I dye, UV light at 365 nm revealed a color shift from yellow to green, signifying a positive reaction. Nucleotide alignment revealed mutations and deletion at the 15th sequence in the JT-INDO-K3 isolate from the East Java FMDV outbreak. Despite differing branches, the phylogenetic tree placed it in the same cluster as serotype O FMDV from Malaysia and Mongolia. Conclusion JT-INDO-K3 exhibited distinctions from Indonesian serotype O FMDV isolates and those documented in GenBank. Then, the RT-LAMP method used in this study has a detection limit 10 times higher latter than the conventional RT-PCR limit, without any cross-reactivity among strains.
Collapse
Affiliation(s)
- Eduardus Bimo Aksono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Institute of Life Science, Technology and Engineering, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Rimayanti Rimayanti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Iwan Sahrial Hamid
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Fedik Abdul Rantam
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Widjiati Widjiati
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mufasirin Mufasirin
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Heni Puspitasari
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Munawaroh Fitria
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Nur Syamsiatul Fajar
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Lucia Tri Suwanti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Nusdianto Nusdianto
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Andi Hamim Zaidan
- Institute of Life Science, Technology and Engineering, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Yuta Kanai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Teguh Hari Sucipto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
5
|
Tsounidi D, Angelopoulou M, Petrou P, Raptis I, Kakabakos S. Simultaneous Detection of SARS-CoV-2 Nucleoprotein and Receptor Binding Domain by a Multi-Area Reflectance Spectroscopy Sensor. BIOSENSORS 2023; 13:865. [PMID: 37754099 PMCID: PMC10526254 DOI: 10.3390/bios13090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Michailia Angelopoulou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Panagiota Petrou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Sotirios Kakabakos
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| |
Collapse
|
6
|
Peng X, Mei X, Yang J, Liu J, Li Y. Ultrasensitive Hybridization Chain Reaction-Assisted Multisite Exonuclease III Amplification Strategy Combined with a Direct Quantitative Fluorescence Lateral Flow Technique for Multiple Bacterial 16S rRNA Detection. Anal Chem 2023; 95:5807-5814. [PMID: 36946074 DOI: 10.1021/acs.analchem.3c00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Accurate and in-time detection of bacteria conduces to preventing their rapid spread around the environment, while a nucleic acid test (NAT) is a powerful tool for early diagnosis of pathogens. Herein, we propose a hybridization chain reaction (HCR)-mediated multisite exonuclease III (Exo-III) amplification strategy (HCR/Exo-III amplifier) to achieve the one-pot and ultrasensitive isothermal amplification of bacterial 16S rRNA and a portable fluorescence detection device (PFD) to directly read signals in a lateral flow assay (LFA). In detail, the target-initiated HCR products present multiple binding sites for triggering the Exo-III amplifier that produces numerous target amplicons. Following that, the target amplicons travel up on the strip and bridge between the DNA-CdTe/CdS probes and the capture DNA to form a positive fluorescence line. After that, the strip is inserted into the PFD to accomplish the fluorescence signal reading. The constructed HCR/Exo-III amplifier-based PFD-LFA implemented the simultaneous and specific detection of three bacteria with a detection limit of a few tenths of fM for synthetic 16S rRNA fragments and dozens of CFU/mL for Staphylococcus aureus, Listeria monocytogenes, and Salmonella typhimurium in pure cultures. The sensing platform features isothermal amplification, convenient operation, and good economy, displaying great potential for on-site testing toward multiple nucleic acid analytes.
Collapse
Affiliation(s)
- Xin Peng
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuecui Mei
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiao Yang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Tarim EA, Oksuz C, Karakuzu B, Appak O, Sayiner AA, Tekin HC. Electromechanical RT-LAMP device for portable SARS-CoV-2 detection. Talanta 2023; 254:124190. [PMID: 36521325 PMCID: PMC9733968 DOI: 10.1016/j.talanta.2022.124190] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Rapid point-of-care tests for infectious diseases are essential, especially in pandemic conditions. We have developed a point-of-care electromechanical device to detect SARS-CoV-2 viral RNA using the reverse-transcription loop-mediated isothermal amplification (RT-LAMP) principle. The developed device can detect SARS-CoV-2 viral RNA down to 103 copies/mL and from a low amount of sample volumes (2 μL) in less than an hour of standalone operation without the need for professional labor and equipment. Integrated Peltier elements in the device keep the sample at a constant temperature, and an integrated camera allows automated monitoring of LAMP reaction in a stirring sample by using colorimetric analysis of unfocused sample images in the hue/saturation/value color space. This palm-fitting, portable and low-cost device does not require a fully focused sample image for analysis, and the operation could be stopped automatically through image analysis when the positive test results are obtained. Hence, viral infections can be detected with the portable device produced without the need for long, expensive, and labor-intensive tests and equipment, which can make the viral tests disseminated at the point-of-care.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Ozgur Appak
- Department of Medical Microbiology, Dokuz Eylul University, Faculty of Medicine, Izmir 35330, Turkey
| | - Ayca Arzu Sayiner
- Department of Medical Microbiology, Dokuz Eylul University, Faculty of Medicine, Izmir 35330, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey,METU MEMS Center, Ankara 06520, Turkey,Corresponding author. Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| |
Collapse
|
8
|
Zhang L, Wang X, Liu D, Wu Y, Feng L, Han C, Liu J, Lu Y, Sotnikov DV, Xu Y, Cheng J. SMART: A Swing-Assisted Multiplexed Analyzer for Point-of-Care Respiratory Tract Infection Testing. BIOSENSORS 2023; 13:228. [PMID: 36831994 PMCID: PMC9954503 DOI: 10.3390/bios13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Respiratory tract infections such as the ongoing coronavirus disease 2019 (COVID-19) has seriously threatened public health in the last decades. The experience of fighting against the epidemic highlights the importance of user-friendly and accessible point-of-care systems for nucleic acid (NA) detection. To realize low-cost and multiplexed point-of-care NA detection, a swing-assisted multiplexed analyzer for point-of-care respiratory tract infection testing (SMART) was proposed to detect multiple respiratory tract pathogens using visible loop-mediated isothermal amplification. By performing hand-swing movements to generate acceleration force to distribute samples into reaction chambers, the design of the SMART system was greatly simplified. By using different format of chips and integrating into a suitcase, this system can be applied to on-site multitarget and multi-sample testing. Three targets including the N and Orf genes of SARS-CoV-2 and the internal control were simultaneously analyzed (limit of detection: 2000 copies/mL for raw sample; 200 copies/mL for extracted sample). Twenty-three clinical samples with eight types of respiratory bacteria and twelve COVID-19 clinical samples were successfully detected. These results indicate that the SMART system has the potential to be further developed as a versatile tool in the diagnosis of respiratory tract infection.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xu Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongchen Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Feng
- CapitalBiotech Technology, Beijing 101111, China
| | - Chunyan Han
- CapitalBiotech Technology, Beijing 101111, China
| | - Jiajia Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Dmitriy V. Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Youchun Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| |
Collapse
|
9
|
Pei F, Feng S, Hu W, Liu B, Mu X, Hao Q, Cao Y, Lei W, Tong Z. Sandwich mode lateral flow assay for point-of-care detecting SARS-CoV-2. Talanta 2023; 253. [PMCID: PMC9612878 DOI: 10.1016/j.talanta.2022.124051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The global corona virus disease 2019 (COVID-19) has been announced a pandemic outbreak, and has threatened human life and health seriously. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as its causative pathogen, is widely detected in the screening of COVID-19 patients, infected people and contaminated substances. Lateral flow assay (LFA) is a popular point-of-care detection method, possesses advantages of quick response, simple operation mode, portable device, and low cost. Based on the above advantages, LFA has been widely developed for detecting SARS-CoV-2. In this review, we summarized the articles about the sandwich mode LFA detecting SARS-CoV-2, classified according to the target detection objects indicating genes, nucleocapsid protein, spike protein, and specific antibodies of SARS-CoV-2. In each part, LFA is further classified and summarized according to different signal detection types. Additionally, the properties of the targets were introduced to clarify their detection significance. The review is expected to provide a helpful guide for LFA sensitization and marker selection of SARS-CoV-2.
Collapse
Affiliation(s)
- Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,Corresponding author
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
10
|
Yang Y, Li H, Jones L, Murray J, Haverstick J, Naikare HK, Mosley YYC, Tripp RA, Ai B, Zhao Y. Rapid Detection of SARS-CoV-2 RNA in Human Nasopharyngeal Specimens Using Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms. ACS Sens 2023; 8:297-307. [PMID: 36563081 PMCID: PMC9797020 DOI: 10.1021/acssensors.2c02194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College
of Engineering, The University of Georgia, Athens,
Georgia30602, United States
| | - Hao Li
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - James Haverstick
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| | - Hemant K. Naikare
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Yung-Yi C. Mosley
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Bin Ai
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| |
Collapse
|
11
|
Jaewjaroenwattana J, Phoolcharoen W, Pasomsub E, Teengam P, Chailapakul O. Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2. Talanta 2023; 251:123783. [PMID: 35977451 PMCID: PMC9357285 DOI: 10.1016/j.talanta.2022.123783] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
The current approaches of diagnostic platforms for detecting SARS-CoV-2 infections mostly relied on adapting the existing technology. In this work, a simple and low-cost electrochemical sensing platform for detecting SAR-CoV-2 antigen was established. The proposed sensor combined the innovative disposable paper-based immunosensor and cost-effective plant-based anti-SARS-CoV-2 monoclonal antibody CR3022, expressed in Nicotiana benthamiana. The cellulose nanocrystal was modified on screen-printed graphene electrode to provide the abundant COOH functional groups on electrode surface, leading to the high ability for antibody immobilization. The quantification of the presence receptor binding domain (RBD) spike protein of SARS-CoV-2 was performed using differential pulse voltammetry by monitoring the changing current of [Fe(CN)6]3-/4- redox solution. The current change of [Fe(CN)6]3-/4- before and after the presence of target RBD could be clearly distinguished, providing a linear relationship with RBD concentration in the range from 0.1 pg/mL to 500 ng/mL with the minimum limit of detection of 2.0 fg/mL. The proposed platform was successfully applied to detect RBD in nasopharyngeal swab samples with satisfactory results. Furthermore, the paper-based immunosensor was extended to quantify the RBD level in spiked saliva samples, demonstrating the broadly applicability of this system. This electrochemical paper-based immunosensor has the potential to be employed as a point-of-care testing for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Jutamas Jaewjaroenwattana
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Ekawat Pasomsub
- Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Abstract
INTRODUCTION The SARS-CoV-2 pandemic, and the subsequent limitations on standard diagnostics, has vastly expanded the user base of Reverse Transcription Loop-mediated isothermal Amplification (RT-LAMP) in fundamental research and development. RT-LAMP has also penetrated commercial markets, with emergency use authorizations for clinical diagnosis. AREAS COVERED This review discusses the role of RT-LAMP within the context of other technologies like RT-qPCR and rapid antigen tests, progress in sample preparation strategies to enable simplified workflow for RT-LAMP directly from clinical specimens, new challenges with primer and assay design for the evolving pandemic, prominent detection modalities including colorimetric and CRISPR-mediated methods, and translational research and commercial development of RT-LAMP for clinical applications. EXPERT OPINION RT-LAMP occupies a middle ground between RT-qPCR and rapid antigen tests. The simplicity approaches that of rapid antigen tests, making it suitable for point-of-care use, but the sensitivity nears that of RT-qPCR. RT-LAMP still lags RT-qPCR in fundamental understanding of the mechanism, and the interplay between sample preparation and assay performance. Industry is now beginning to address issues around scalability and usability, which could finally enable LAMP and RT-LAMP to find future widespread application as a diagnostic for other conditions, including other pathogens with pandemic potential.
Collapse
Affiliation(s)
- Gihoon Choi
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Taylor J Moehling
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Robert J Meagher
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
13
|
Li M, Ge H, Sun Z, Fu J, Cao L, Feng X, Meng G, Peng Y, Liu Y, Zhao C. A loop-mediated isothermal amplification-enabled analytical assay for the detection of SARS-CoV-2: A review. Front Cell Infect Microbiol 2022; 12:1068015. [PMID: 36619749 PMCID: PMC9816412 DOI: 10.3389/fcimb.2022.1068015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The number of words: 4645, the number of figures: 4, the number of tables: 1The outbreak of COVID-19 in December 2019 caused a global pandemic of acute respiratory disease, and with the increasing virulence of mutant strains and the number of confirmed cases, this has resulted in a tremendous threat to global public health. Therefore, an accurate diagnosis of COVID-19 is urgently needed for rapid control of SARS-CoV-2 transmission. As a new molecular biology technology, loop-mediated isothermal amplification (LAMP) has the advantages of convenient operation, speed, low cost and high sensitivity and specificity. In the past two years, rampant COVID-19 and the continuous variation in the virus strains have demanded higher requirements for the rapid detection of pathogens. Compared with conventional RT-PCR and real-time RT-PCR methods, genotyping RT-LAMP method and LAMP plus peptide nucleic acid (PNA) probe detection methods have been developed to correctly identified SARS-CoV-2 variants, which is also why LAMP technology has attracted much attention. LAMP detection technology combined with lateral flow assay, microfluidic technology and other sensing technologies can effectively enhance signals by nucleic acid amplification and help to give the resulting output in a faster, more convenient and user-friendly way. At present, LAMP plays an important role in the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mingna Li
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Hongjuan Ge
- College of public health, Jilin Medical University, Jilin, China
| | - Zhe Sun
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Jangshan Fu
- College of public health, Jilin Medical University, Jilin, China
| | - Lele Cao
- College of public health, Jilin Medical University, Jilin, China
| | - Xinrui Feng
- College of public health, Jilin Medical University, Jilin, China,Medical college, Yanbian University, Jilin, China
| | - Guixian Meng
- College of medical laboratory, Jilin Medical University, Jilin, China
| | - Yubo Peng
- Business School, The University of Adelaide, Adelaide, SA, Australia
| | - Yan Liu
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| | - Chen Zhao
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| |
Collapse
|
14
|
The Future of Point-of-Care Nucleic Acid Amplification Diagnostics after COVID-19: Time to Walk the Walk. Int J Mol Sci 2022; 23:ijms232214110. [PMID: 36430586 PMCID: PMC9693045 DOI: 10.3390/ijms232214110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Since the onset of the COVID-19 pandemic, over 610 million cases have been diagnosed and it has caused over 6.5 million deaths worldwide. The crisis has forced the scientific community to develop tools for disease control and management at a pace never seen before. The control of the pandemic heavily relies in the use of fast and accurate diagnostics, that allow testing at a large scale. The gold standard diagnosis of viral infections is the RT-qPCR. Although it provides consistent and reliable results, it is hampered by its limited throughput and technical requirements. Here, we discuss the main approaches to rapid and point-of-care diagnostics based on RT-qPCR and isothermal amplification diagnostics. We describe the main COVID-19 molecular diagnostic tests approved for self-testing at home or for point-of-care testing and compare the available options. We define the influence of specimen selection and processing, the clinical validation, result readout improvement strategies, the combination with CRISPR-based detection and the diagnostic challenge posed by SARS-CoV-2 variants for different isothermal amplification techniques, with a particular focus on LAMP and recombinase polymerase amplification (RPA). Finally, we try to shed light on the effect the improvement in molecular diagnostics during the COVID-19 pandemic could have in the future of other infectious diseases.
Collapse
|
15
|
Gul I, Liu C, Yuan X, Du Z, Zhai S, Lei Z, Chen Q, Raheem MA, He Q, Hu Q, Xiao C, Haihui Z, Wang R, Han S, Du K, Yu D, Zhang CY, Qin P. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering (Basel) 2022; 9:571. [PMID: 36290539 PMCID: PMC9598380 DOI: 10.3390/bioengineering9100571] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiuyue Hu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhang Haihui
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
16
|
Wu CC, Chiang YH, Chiang HY. A Label-Free Electrochemical Impedimetric Immunosensor with Biotinylated-Antibody for SARS-CoV-2 Nucleoprotein Detection in Saliva. BIOSENSORS 2022; 12:bios12050265. [PMID: 35624566 PMCID: PMC9138907 DOI: 10.3390/bios12050265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 05/05/2023]
Abstract
The timely detecting of SARS-CoV-2 coronavirus antigens for infection validation is an urgent request for COVID-19 pandemic control. This study constructed label-free electrochemical impedance spectroscopy (EIS)-based immunosensors based on gold nanostructured screen-printed carbon electrodes (AuNS/SPCEs) to detect the SARS-CoV-2 nucleocapsid protein (N-protein) in saliva. Using short-chain 3-mercaptopropionic acid (MPA) as a linker to covalently bond streptavidin (SA) and bovine serum albumin (BSA) for controlling the oriented immobilization of the biotinylated anti-N-protein antibody (BioAb) can offer a greater sensitivity, a lower limit of detection (LOD), and better reproducibility of immunosensors (defined as BioAb/SA-BSA/MPA/AuNS/SPCEs) than the antibody randomly immobilized immunosensors and the long-chain 11-mercaptoundecanoic acid (MUA)-modified immunosensors (BioAb/SA-BSA/MUA/AuNS/SPCEs). The BioAb/SA-BSA/MPA/AuNS/SPCE-based immunosensors presented good linearity from 0.01 ng/mL to 100 ng/mL and a low LOD of 6 pg/mL in a phosphate buffer solution (PBS) and PBS-diluted saliva. Moreover, the immunosensor exhibited little cross-activity with other viral antigens such as MERS-CoV N-protein, influenza A N-protein, influenza B N-protein, and SARS-CoV-2 spike protein, indicating the high specificity of the immunosensors. The disposable label-free EIS-based immunosensors have promising potential in facilitating the rapid and sensitive tests of saliva-based COVID-19 diagnostics.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-1268
| | - Yu-Huan Chiang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | | |
Collapse
|
17
|
De Felice M, De Falco M, Zappi D, Antonacci A, Scognamiglio V. Isothermal amplification-assisted diagnostics for COVID-19. Biosens Bioelectron 2022; 205:114101. [PMID: 35202984 PMCID: PMC8849862 DOI: 10.1016/j.bios.2022.114101] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
The scenery of molecular diagnostics for infectious diseases is rapidly evolving to respond to the COVID-19 epidemic. The sensitivity and specificity of diagnostics, along with speed and accuracy, are crucial requirements for effective analytical tools to address the disease spreading around the world. Emerging diagnostic devices combine the latest trends in isothermal amplification methods for nucleic acids with state-of-the-art biosensing systems, intending to bypass roadblocks encountered in the last 2 years of the pandemic. Isothermal nucleic acid amplification is a simple procedure that quickly and efficiently accumulates nucleic acid sequences at a constant temperature, without the need for sophisticated equipment. The integration of isothermal amplification into portable biosensing devices confers high sensitivity and improves screening at the point of need in low-resource settings. This review reports the latest trends reached in this field with the latest examples of isothermal amplification-powered biosensors for detecting SARS-CoV-2, with different configurations, as well as their intrinsic advantages and disadvantages.
Collapse
Affiliation(s)
- Mariarita De Felice
- Institute of Bioscience and BioResources, National Research Council, Department of Biology, Agriculture and Food Science, Via P. Castellino 111, 80100, Naples, Italy
| | - Mariarosaria De Falco
- Institute of Bioscience and BioResources, National Research Council, Department of Biology, Agriculture and Food Science, Via P. Castellino 111, 80100, Naples, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Rome, Italy.
| |
Collapse
|