1
|
Li Y, Chen Z, Zhang K, Wang S, Bu X, Tan J, Song W, Mu Z, Zhang P, Huang L. A Flexible Capacitive Pressure Sensor with Adjustable Detection Range Based on the Inflatable Dielectric Layer for Human-Computer Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40250-40262. [PMID: 39031762 DOI: 10.1021/acsami.4c08387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
As an essential component in wearable electronic devices and intelligent robots, flexible pressure sensors have enormous application value in fields such as healthcare, human-computer interaction, and intelligent perception. However, due to the complex and ever-changing pressure loads borne by sensors in different application scenarios, this also puts great demands on the flexible response and adjustment ability of a sensor's detection range. Therefore, developing a flexible pressure sensor with a wide and adjustable detection range, which can be applied flexibly under different pressure loads, is also a major challenge in current research. In this paper, we propose a flexible pressure sensor with a wide and adjustable detection range based on an inflatable adjustable safety airbag as the dielectric layer. This sensor uses inflatable airbags prepared using 3D printing technology and silicone reverse molding technology as the dielectric layer and achieves high sensitivity (0.6 kPa-1 to 1.19 kPa-1), wide detection range (220-1500 kPa), and flexible performance applicability by adjusting the air pressure inside the dielectric layer. At the same time, its simple production process, convenient production, fast response time (100 ms), and good stability provide the possibility for the flexible application of sensors in different pressure detection. The experimental results indicate that the sensor has enormous potential for applications in wearable devices, healthcare, human-computer interaction, and intelligent perception recognition.
Collapse
Affiliation(s)
- Yuxia Li
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhifu Chen
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kun Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo Wang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaofei Bu
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiapeng Tan
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenzheng Song
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhichao Mu
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Peng Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Liangsong Huang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Li Z, Li K, Wang W, Zhang T, Yang X. Ultrawide linear range, high sensitivity, and large-area pressure sensor arrays enabled by pneumatic spraying broccoli-like microstructures. MATERIALS HORIZONS 2024; 11:2271-2280. [PMID: 38439709 DOI: 10.1039/d3mh02232c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-area pressure sensor arrays with a wide linear response range and high sensitivity are beneficial to map the inhomogeneous interface pressure, which is significant in practical applications. Here, we demonstrate a pneumatic spraying method to prepare large-area microstructure films (PSMF) for high performance pressure sensor arrays. The sprayed surface morphology is designable by controlling the spraying parameters. It is worth noting that the constructed "broccoli" like morphology with a swollen top and shrunken bottom inspired a new mechanism to enlarge the linear response range by decreasing the series resistance with pressure increasing. At the same time, the pneumatic sprayed "broccoli" has a rough surface due to droplet stacking, which reduces the initial current effectively. Hence, the sensor achieves a 10 000 kPa ultrawide linear response range with a high sensitivity (98.71 kPa-1), and low detection (5 Pa). The prepared sensor has a small static response error (4.4%) and 5000 cycle full-range dynamic response durability. Finally, the constructed sensor arrays can distinguish the pressure distribution in different ranges clearly, which indicates a great potential in health care, motion detection, and the tire industry.
Collapse
Affiliation(s)
- Zonglin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kun Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiwei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Huangpu Institute of Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Guangzhou 510530, China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Du C, Zhang H, Liu X, Zhou S, Ma Y, Li S, Zhang Y. Flexible and Simply Degradable MXene-Methylcellulose Piezoresistive Sensor for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12996-13005. [PMID: 38422506 DOI: 10.1021/acsami.3c16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Flexible pressure sensors are intensively demanded in various fields such as electronic skin, medical and health detection, wearable electronics, etc. MXene is considered an excellent sensing material due to its benign metal conductivity and adjustable interlayer distance. Exhibiting both high sensitivity and long-term stability is currently an urgent pursuit in MXene-based flexible pressure sensors. In this work, high-strength methylcellulose was introduced into the MXene film to increase the interlayer distance of 2D nanosheets and fundamentally overcome the self-stacking problem. Thus, concurrent improvement of the sensing capability and mechanical strength was obtained. By appropriately modulating the ratio of methylcellulose and MXene, the obtained pressure sensor presents a high sensitivity of 19.41 kPa-1 (0.88-24.09 kPa), good stability (10000 cycles), and complete biodegradation in H2O2 solution within 2 days. Besides, the sensor is capable of detecting a wide range of human activities (pulse, gesture, joint movement, etc.) and can precisely recognize spatial pressure distribution, which serves as a good candidate for next-generation wearable electronic devices.
Collapse
Affiliation(s)
- Changzhou Du
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Hongjian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiaofei Liu
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shengyang Zhou
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanan Ma
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Shuxuan Li
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
4
|
Zhao Y, Lei X, Zeng Z, Guo D, Li Y, Ma R, Shen S, Liu F. Highly Sensitive Flexible Pressure Sensors with Hybrid Microstructures Similar to Volcano Sponge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54743-54752. [PMID: 37968935 DOI: 10.1021/acsami.3c14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Preparing hybrid microstructures on flexible substrates is a crucial approach to achieving highly sensitive flexible pressure sensors. However, the preparation of hybrid microstructures on soft materials often faces complex, time-consuming, and costly problems, which hampers the advancement of highly sensitive flexible sensors. Herein, based on a 3D-printing template and a household microwave oven, a simple, green, and one-step microwave irradiation process using glucose porogen is applied to develop a flexible pressure sensor with a volcano-sponge-like porous dome structure based on porous polydimethylsiloxane (PDMS). Due to the easily deformable porous dome on the porous PDMS substrate, the flexible pressure sensor showcases exceptional sensitivity of 611.85 kPa-1 in 0-1 and 50.31 kPa-1 over a wide range of 20-80 kPa. Additionally, the sensor takes only 43 ms to respond, 123 ms to recover, and presents excellent stability (>1100 cycles). In application testing, the sensor effectively captures pulse signals, speech signals, tactile signals from a mechanical gripper, and gesture signals, demonstrating its potential applications in medical diagnosis and robotics. In conclusion, the microwave irradiation method based on template and glucose porogen provides a new way for the simple, low-cost, and green preparation of porous-surface hybrid microstructures on polymers and high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Yilin Zhao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiao Lei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ziran Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Dingyi Guo
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Rui Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Shengnan Shen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
7
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|