1
|
Li C, Jia H, Wei R, Liu J, Wang H, Zhou M, Yan C, Huang L. An easy-operation aptasensor for simultaneous detection of multiple tumor-associated exosomal proteins based on multicolor fluorescent DNA nanoassemblies. Talanta 2025; 281:126843. [PMID: 39277930 DOI: 10.1016/j.talanta.2024.126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
As a promising liquid biopsy biomarker, exosomes have demonstrated great potential and advantages in the noninvasive tumor diagnosis. However, an accurate and sensitive method for tumors-associated exosomes detection is scarce. Herein, we presented an easy-operation aptasensor which simultaneously detect multiple exosomal proteins by using multicolor fluorescent DNA nanoassemblies (FDNs) and CD63 aptamer-modified magnetic beads (MNPs-AptCD63). In this system, the FDNs were firstly constructed by encapsulating different quantum dots (QDs) into rolling circle amplification (RCA) products that contained different aptamer sequences. Thus, the FDNs could selectively recognize the different exosomal proteins captured by the MNPs-AptCD63, and achieve the multiplex and sensitive detection according to the fluorescence of QDs. Benefiting from the signal amplification capacity and high selectivity of FDNs, this aptasensor not only could detect exosomes as low as 650 particles/μL, but also showed accurate analysis in clinical samples. In addition, we can also achieve point-of-care testing (POCT) due to the simple analysis steps and naked-eye observable fluorescence of QDs under the ultraviolet irradiation. We believe that our aptasensor could provide a promising platform for exosomes-based personalized diagnosis and precise monitoring of human health.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rong Wei
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jiqing Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haoyu Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Zhang H, Tian F, Shi Y, Zhang X, Zheng G, Li L. Integrating All-rounder TiO 2 Accelerated Electrochemiluminescence with Dual-Quenching PDA@COF Probes for Sensitive Quantification and Protein Profiling of Tumorous Exosomes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39496573 DOI: 10.1021/acsami.4c13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Exosomes have been perceived as promising biomarkers for noninvasive cancer diagnosis and treatment monitoring. However, the sensitive and accurate quantification and phenotyping of exosomes remains challenging. Herein, a versatile electrochemiluminescence (ECL) aptasensor was proposed for the sensitive analysis of tumorous exosomes. Specifically, a ternary nanohybrid (Ru-HAuTiO2), by covalently linking ECL luminophore Ru(dcbpy)32+ with gold nanoparticles (AuNPs)-decorated hollow urchin-like TiO2 (HTiO2), was ingeniously designed as a highly luminescent and self-enhanced ECL nanoemitter. Notably, the porous HTiO2 played an "all-rounder" role, including the carrier for ECL luminophores and AuNPs, coreaction accelerator, and specific exosome capturing scaffold through Ti-phosphate coordination interaction. On the other hand, a polydopamine modified covalent organic framework (PDA@COF) was employed as a quencher to remarkably attenuate the ECL of Ru-HAuTiO2 through a dual-quenching mechanism, and further labeled with a specific aptamer (Apt) of exosomal surface protein. Based on forming a Ru-HAuTiO2/exosome/Apt-PDA@COF sandwich structure on the electrode, a "signal on-off" ECL platform for tumorous exosomes was constructed, realizing sensitive detection within the range of 3.1 × 103 particles/mL to 1 × 108 particles/mL and a low limit of detection of 1.41 × 103 particles/mL, achieving phenotypic profiling of surface proteins on different tumorous exosomes. This work provides a promising alternative method for the detection and analysis of exosomes.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fang Tian
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Shi
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xia Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guocai Zheng
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lingling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Li N, Ren C, Hu Q, Wang B, Yang Z, Xiao L, Guan T. Multiplex aptamer cluster detection platform and systems toxicology study for 17β-estradiol, bisphenol A, and diethylstilbestrol. Food Chem 2024; 463:141395. [PMID: 39340920 DOI: 10.1016/j.foodchem.2024.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Intake of 17β-estradiol (E2), bisphenol A (BPA), and diethylstilbestrol (DES) from food can contribute to endocrine disorders. Therefore, developing a sensitive method for the simultaneous detection of E2, BPA, and DES and understanding their combined effects on endocrine disruption are crucial. We developed a fluorescence aptasensing platform utilizing DNase I-assisted cyclic enzymatic signal amplification in conjunction with an aptamer/graphene oxide complex. Using PEG 20000 as a surface-blocking agent, the aptasensor achieved ultralow detection limits of 2.643, 0.3039, and 0.6996 for E2, BPA, and DES, respectively. The sensor demonstrated accurate detection in plastic bottled water at spiked levels of 10 and 100 ng/mL. Systems toxicology revealed 30 potential targets for mixture-induced endocrine disruption. Molecular docking showed binding affinities of E2, BPA, and DES for ESR1 of -9.94, -8.29, and - 8.98 kcal/mol, respectively. These results highlight the effectiveness of the aptasensor and provide valuable insights into endocrine disruption mechanisms.
Collapse
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Chenxi Ren
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Qin Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Bo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China.
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
5
|
Srivastava A, Harijan M, Prasad R, Singh M. Dual template (epitope) imprinted electrode for sensing bacterial protein with high selectivity. J Mol Recognit 2024; 37:e3087. [PMID: 38686731 DOI: 10.1002/jmr.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Manjeet Harijan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Rajniti Prasad
- Department of Paediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Geng L, Sun J, Liu M, Huang J, Dong J, Guo Z, Guo Y, Sun X. Molecularly imprinted polymers-aptamer electrochemical sensor based on dual recognition strategy for high sensitivity detection of chloramphenicol. Food Chem 2024; 437:137933. [PMID: 37951077 DOI: 10.1016/j.foodchem.2023.137933] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
In this paper, an electrochemical sensor based on a dual recognition strategy of molecularly imprinted polymers (MIPs) and aptamer (Apt) has been designed for the high sensitivity detection of chloramphenicol (CAP). Here, MIPs and Apt have provided dual recognition sites to greatly improve the specific recognition ability of the sensor. Chitosan-multi-walled carbon nanotubes (CS-MWNTs) and AuNPs (gold nanoparticles) have been used for their excellent electrical conductivity. When CAP existed in the detection environment, the imprinted cavities with specific recognition ability bound to CAP through forces such as hydrogen bonds. It hindered the rate of electron transfer and resulted in a decrease in current value. Quantitative detection of CAP could be achieved after analyzing the relationship between the concentration of CAP and the change of current value. After optimizing the experimental parameters, the detection range of the sensor was 10-8 g/L-10-2 g/L with the limit of detection of 3.3 × 10-9 g/L, indicating that the sensor had a high practical application potential.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiwei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
7
|
Jiang Z, Luo K, Zeng H, Li J. Monitoring of Medical Wastewater by Sensitive, Convenient, and Low-Cost Determination of Small Extracellular Vesicles Using a Glycosyl-Imprinted Sensor. ACS Sens 2024; 9:1252-1260. [PMID: 38373338 DOI: 10.1021/acssensors.3c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monitoring of small extracellular vesicles (sEVs) in medical waste is of great significance for the prevention of the spread of infectious diseases and the treatment of environmental pollutants in medical waste. Highly sensitive and selective detection methods are urgently needed due to the low content of sEVs in waste samples and the complex sample composition. Herein, a glycosyl-imprinted electrochemical sensor was constructed and a novel strategy for rapid, sensitive, and selective sEVs detection was proposed. The characteristic trisaccharide at the end of the glycosyl chain of the glycoprotein carried on the surface of the sEVs was used as the template molecule. The glycosyl-imprinted polymer films was then prepared by electropolymerization with o-phenylenediamine (o-PD) and 3-aminophenylboronic acid (m-APBA) as functional monomers. sEVs were captured by the imprinted cavities through the recognition and adsorption of glycosyl chains of glycoproteins on sEVs. The m-APBA molecule also acted as a signal probe and was then attached on the immobilized glycoprotein on the surface of sEVs by boric acid affinity. The electrochemical signal of m-APBA was amplificated due to the abundant glycoproteins on the surface of sEVs. The detection range of the sensor was 2.1 × 104 to 8.7 × 107 particles/mL, and the limit of detection was 1.7 × 104 particles/mL. The sensor was then applied to the determination of sEVs in medical wastewater and urine, which showed good selectivity, low detection cost, and good sensitivity.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kui Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
9
|
Jiang Z, Luo K, Yang G, Li Y, Li L, Wang G, Qin T, Li J. An Electrochemiluminescent Sensor Based on Glycosyl Imprinting and Aptamer for the Detection of Cancer-Related Extracellular Vesicles. Anal Chem 2024; 96:2550-2558. [PMID: 38314707 DOI: 10.1021/acs.analchem.3c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cancer-related extracellular vesicles (EVs) are considered important biomarkers for cancer diagnosis because they can convey a large amount of information about tumor cells. In order to detect cancer-related EVs efficiently, an electrochemiluminescence (ECL) sensor for the specific identification and highly sensitive detection of EVs in the plasma of cancer patients was constructed based on dual recognitions by glycosyl-imprinted polymer (GIP) and aptamer. The characteristic glycosyl Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc trisaccharide on the surface of EVs was used as a template molecule and 3-aminophenylboronic acid as a functional monomer to form a glycosyl-imprinted polymer by electropolymerization. After glycosyl elution, the imprinted film specifically recognized and adsorbed the EVs in the sample, and then the CD63 aptamer-bipyridine ruthenium (Aptamer-Ru(bpy)) was added to combine with the CD63 glycoprotein on the extracellular vesicle's surface, thus providing secondary recognition of the EVs. Finally, the EVs were quantitatively detected according to the ECL signal produced by the labeled bipyridine ruthenium. When more EVs were captured by the imprinted film, more probes were obtained after incubation, and the ECL signal was stronger. Under the optimized conditions, the ECL signal showed a good linear relationship with the concentration of EVs in the range of 9.5 × 102 to 9.5 × 107 particles/mL, and the limit of detection was 641 particles/mL. The GIP sensor can discriminate between the EV contents of cancer patients and healthy controls with high accuracy. Because of its affordability, high sensitivity, and ease of use, it is anticipated to be employed for cancer early detection and diagnosis.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kui Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Guangwei Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yang Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ling Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Guocong Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Tao Qin
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Feng J, Dong L, Wang H, Xie Y, Wang H, Ding L, Song G, Zhang J, Li T, Shen Q, Zhang Y. Application of aptamer-conjugated graphene oxide for specific enrichment of microcystin-LR in Achatina fulica prior to matrix-assisted laser desorption ionization mass spectrometry. Electrophoresis 2024; 45:275-287. [PMID: 37768831 DOI: 10.1002/elps.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, P. R. China
| | - Yihong Xie
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Huizi Wang
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Lan Ding
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Ting Li
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
11
|
Mohammadinejad A, Gaman LE, Aleyaghoob G, Gaceu L, Mohajeri SA, Moga MA, Badea M. Aptamer-Based Targeting of Cancer: A Powerful Tool for Diagnostic and Therapeutic Aims. BIOSENSORS 2024; 14:78. [PMID: 38391997 PMCID: PMC10887380 DOI: 10.3390/bios14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Cancer is known as one of the most significant causes of death worldwide, and, in spite of novel therapeutic methods, continues to cause a considerable number of deaths. Targeted molecular diagnosis and therapy using aptamers with high affinity have become popular techniques for pathological angiogenesis and cancer therapy scientists. In this paper, several aptamer-based diagnostic and therapeutic techniques such as aptamer-nanomaterial conjugation, aptamer-drug conjugation (physically or covalently), and biosensors, which have been successfully designed for biomarkers, were critically reviewed. The results demonstrated that aptamers can potentially be incorporated with targeted delivery systems and biosensors for the detection of biomarkers expressed by cancer cells. Aptamer-based therapeutic and diagnostic methods, representing the main field of medical sciences, possess high potential for use in cancer therapy, pathological angiogenesis, and improvement of community health. The clinical use of aptamers is limited due to target impurities, inaccuracy in the systematic evolution of ligands via exponential enrichment (SELEX)stage process, and in vitro synthesis, making them unreliable and leading to lower selectivity for in vivo targets. Moreover, size, behavior, probable toxicity, low distribution, and the unpredictable behavior of nanomaterials in in vivo media make their usage in clinical assays critical. This review is helpful for the implementation of aptamer-based therapies which are effective and applicable for clinical use and the design of future studies.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 500014 Brașov, Romania;
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| |
Collapse
|
12
|
Oudeng G, Ni J, Wu H, Wu H, Yang M, Wen C, Wang Y, Tan H. Amplified detection of SARS-COV-2 B.1.1.529 (Omicron) gene oligonucleotides based on exonuclease III-aided MoS 2 /AIE nanoprobes. LUMINESCENCE 2024; 39:e4675. [PMID: 38286603 DOI: 10.1002/bio.4675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
The coronavirus disease-2019 pandemic reflects the underdevelopment of point-of-care diagnostic technology. Nuclei acid (NA) detection is the "gold standard" method for the early diagnosis of the B.1.1.529 (Omicron) variant of severe acute respiratory syndrome-coronavirus disease-2. Polymerase chain reaction is the main method for NA detection but requires considerable manpower and sample processing taking ≥ 3 h. To simplify the operation processes and reduce the detection time, exonuclease III (Exo III)-aided MoS2 /AIE nanoprobes were developed for rapid and sensitive detection of the oligonucleotides of Omicron. Molybdenum disulfide (MoS2 ) nanosheets with excellent optical absorbance and distinguishable affinity to single-strand and duplex DNAs were applied as quenchers, and aggregation-induced emission (AIE) molecules with high luminous efficiency were designed as donor in fluorescence resonance energy transfer-based nanoprobes. Exo III with catalytic capability was used for signal amplification to increase the sensitivity of detection. The composite nanoprobes detected the mutated nucleocapsid (N)-gene and spike (S)-gene oligonucleotides of Omicron within 40 min with a limit of detection of 4.7 pM, and showed great potential for application in community medicine.
Collapse
Affiliation(s)
- Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuanwei Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Hui Tan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
14
|
Qian T, Bao J, Liu X, Oudeng G, Ye W. A "turn-on" fluorescence resonance energy transfer aptasensor based on carbon dots and gold nanoparticles for 17β-estradiol detection in sea salt. RSC Adv 2023; 13:27772-27781. [PMID: 37731834 PMCID: PMC10507534 DOI: 10.1039/d3ra05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
17β-estradiol is abused in the food industry. Excess 17β-estradiol can disturb the endocrine system or cause many diseases including obesity, diabetes, cardiac-cerebral vascular disease, and cancers in the human body. A "turn-on" fluorescence resonance energy transfer (FRET) aptasensor based on carbon dots (CDs) and gold nanoparticles (AuNPs) was developed for the detection of 17β-estradiol. A thiol-modified oligonucleotide was conjugated to AuNPs and amino modified oligonucleotide was linked to CDs. The 17β-estradiol aptamer was hybridized with the two oligonucleotides, shortening the distance between CDs and AuNPs. With 360 nm UV light excitation, FRET occurred between CDs and AuNPs. The system was "turn-off". When 17β-estradiol was detected, the aptamer specifically bound to 17β-estradiol, and the FRET system was destroyed, leading to the "turn-on" phenomenon. The fluorescence intensity recovery was detected in the concentration range of 400 pM to 5.5 μM. The limit of detection (LOD) was 245 pM. The FRET aptasensor demonstrated good selectivity for 17β-estradiol detection. Reasonable spiked recoveries were obtained in sea salt samples. It showed the potential for estrogen detection in food safety and environmental applications.
Collapse
Affiliation(s)
- Tianrun Qian
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Food Science and Technology, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia Bao
- The Science Technology Department of Zhejiang Province Hangzhou 310006 People's Republic of China
| | - Xuepeng Liu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children's Hospital Shenzhen 518000 People's Republic of China
| | - Weiwei Ye
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Ninghai ZJUT Academy of Science and Technology Ningbo 315615 People's Republic of China
| |
Collapse
|
15
|
Zhang J, Chen Q, Gao X, Lin Q, Suo Z, Wu D, Wu X, Chen Q. A Label-Free and Antibody-Free Molecularly Imprinted Polymer-Based Impedimetric Sensor for NSCLC-Cells-Derived Exosomes Detection. BIOSENSORS 2023; 13:647. [PMID: 37367012 DOI: 10.3390/bios13060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
In this study, a label-free and antibody-free impedimetric biosensor based on molecularly imprinting technology for exosomes derived from non-small-cell lung cancer (NSCLC) cells was established. Involved preparation parameters were systematically investigated. In this design, with template exosomes anchored on a glassy carbon electrode (GCE) by decorated cholesterol molecules, the subsequent electro-polymerization of APBA and elution procedure afforded a selective adsorption membrane for template A549 exosomes. The adsorption of exosomes caused a rise in the impedance of the sensor, so the concentration of template exosomes can be quantified by monitoring the impedance of GCEs. Each procedure in the establishment of the sensor was monitored with a corresponding method. Methodological verification showed great sensitivity and selectivity of this method with an LOD = 2.03 × 103 and an LOQ = 4.10 × 104 particles/mL. By introducing normal cells and other cancer cells derived exosomes as interference, high selectivity was proved. Accuracy and precision were measured, with an obtained average recovery ratio of 100.76% and a resulting RSD of 1.86%. Additionally, the sensors' performance was retained at 4 °C for a week or after undergoing elution and re-adsorption cycles seven times. In summary, the sensor is competitive for clinical translational application and improving the prognosis and survival for NSCLC patients.
Collapse
Affiliation(s)
- Jingbo Zhang
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Quancheng Chen
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Xuemin Gao
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Qian Lin
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Ziqin Suo
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Di Wu
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Xijie Wu
- Department of Cardiac Surgery, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Xiamen 361010, China
| | - Qing Chen
- School of Pharmaceutical Science, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
16
|
Kang MS, Cho E, Choi HE, Amri C, Lee JH, Kim KS. Molecularly imprinted polymers (MIPs): emerging biomaterials for cancer theragnostic applications. Biomater Res 2023; 27:45. [PMID: 37173721 PMCID: PMC10182667 DOI: 10.1186/s40824-023-00388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a disease caused by abnormal cell growth that spreads through other parts of the body and threatens life by destroying healthy tissues. Therefore, numerous techniques have been employed not only to diagnose and monitor the progress of cancer in a precise manner but also to develop appropriate therapeutic agents with enhanced efficacy and safety profiles. In this regard, molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. Taken together, the topics discussed in this review provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment. Molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for cancer theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. The topics discussed in this review aim to provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment.
Collapse
Affiliation(s)
- Min Seok Kang
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
17
|
Ding Z, Wei Y, Liu X, Han F, Xu Z. Substantial dimerized G-quadruplex signal units engineered by cutting-mediated exponential rolling circle amplification for ultrasensitive and label-free detection of exosomes. Anal Chim Acta 2023; 1253:341098. [PMID: 36965991 DOI: 10.1016/j.aca.2023.341098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Sensitive and accurate determination of tumor-derived exosomes from complicated biofluids is an important prerequisite for early tumor diagnosis through exosome-based liquid biopsy. Herein, a label-free fluorescence immunoassay protocol for ultrasensitive detection of exosomes was developed by engineering substantial dimerized guanine-quadruplex (Dimer-G4) signal units via in situ cutting-mediated exponential rolling circle amplification (CM-ERCA). First, exosomes were captured and enriched via immunomagnetic separation. Then, molecular recognition was built by the formation of antibody-aptamer sandwich immunocomplex through the specific binding of the designed aptamer-primers with the targeted exosomes. The accuracy of exosome detection was significantly improved by the specific recognition of two typical exosomal protein markers simultaneously. Eventually, in situ CM-ERCA was triggered by a perfect match between the multifunctional circular DNA template and the aptamer-primer on exosomal surface. Amplicons of CM-ERCA loaded with Dimer-G4 were exponentially accumulated during continuous cyclic amplification, dramatically lighting up the thioflavin T (ThT) and generating substantial Dimer-G4 signal units. As a result, ultrasensitive detection of exosomes with the detection limit down to 2.4 × 102 particles/mL was achieved due to the fluorescence enhancement of substantial Dimer-G4 signal units, which is ahead of most of available fluorescence-based methods reported currently. In addition, the intense fluorescence emission and favorable anti-interference of the proposed immunoassay supports identification of exosomes direct in human serums, overcoming the limitations of conventional G4/ThT in serum analysis and revealing its potential for exosome-based liquid biopsy.
Collapse
Affiliation(s)
- Ziling Ding
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Fei Han
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China.
| |
Collapse
|
18
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
19
|
Yi P, Luo D, Gao Z, Chen Q, Zhou Y. Fluorescent aptasensor based on the MNPs-CRISPR/Cas12a-TdT for the determination of nasopharyngeal carcinoma-derived exosomes. Mikrochim Acta 2023; 190:74. [PMID: 36700990 DOI: 10.1007/s00604-023-05657-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
A fluorescence aptasensor based on taking the advantage of the combination of magnetic nanoparticles (MNPs), terminal deoxynucleotidyl transferase (TdT), and CRISPR/Cas12a was developed for the determination of nasopharyngeal carcinoma (NPC)-derived exosomes. The MNPs can eliminate background interference due to their magnetic separation capability. TdT can form an ultra-long polynucleotide tail which can bind with multiple crRNA, generating a signal amplification effect. The trans-cleavage activity of CRISPR/Cas12a can be specifically triggered via the crRNA binding with DNA, resulting in the bi-labeled DNA reporter with fluorophore and quencher being cleaved. The excitation wavelength of the fluorescence spectra was 490 nm. Fluorescence spectra with emission wavelengths ranging from 511 to 600 nm were collected. Under the optimization condition, the fabricated fluorescence aptasensor for NPC-derived exosome determination exhibited excellent sensitivity and specificity, with the linear range between 500 to 5 × 104 particles mL-1 and the limit of detection of 100 particles mL-1. It can be used for the determination of NPC-derived exosomes in clinical samples, which has a considerable clinical potential and prospect.
Collapse
Affiliation(s)
- Peng Yi
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dan Luo
- Department of Pharmacy, Zigong Third People's Hospital, Zigong, 643020, Sichuan, China
| | - Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, 518103, Guangdong, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, Guangdong, China.
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
Gao J, Li A, Hu J, Feng L, Liu L, Shen Z. Recent developments in isolating methods for exosomes. Front Bioeng Biotechnol 2023; 10:1100892. [PMID: 36714629 PMCID: PMC9879965 DOI: 10.3389/fbioe.2022.1100892] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Exosomes are the smallest extracellular vesicles that can be released by practically all cell types, and range in size from 30 nm to 150 nm. As the major marker of liquid biopsies, exosomes have great potential for disease diagnosis, therapy, and prognosis. However, their inherent heterogeneity, the complexity of biological fluids, and the presence of nanoscale contaminants make the isolation of exosomes a great challenge. Traditional isolation methods of exosomes are cumbersome and challenging with complex and time-consuming operations. In recent years, the emergence of microfluidic chips, nanolithography, electro-deposition, and other technologies has promoted the combination and innovation of the isolation methods. The application of these methods has brought very considerable benefits to the isolation of exosomes such as ultra-fast, portable integration, and low loss. There are significant functional improvements in isolation yield, isolation purity, and clinical applications. In this review, a series of methods for the isolation of exosomes are summarized, with emphasis on the emerging methods, and in-depth comparison and analysis of each method are provided, including their principles, merits, and demerits.
Collapse
Affiliation(s)
| | | | | | | | - Liu Liu
- *Correspondence: Zuojun Shen, ; Liu Liu,
| | | |
Collapse
|
21
|
Bhatia R, Singh A, Narang RK. Fluorescence Resonance Energy Transfer (FRET) based Sensors: An Advanced Multifactorial Approach in Modern Analysis. Curr Pharm Des 2023; 29:2361-2365. [PMID: 37817653 DOI: 10.2174/0113816128255541231009092936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, GT Road, Ghall Kalan, Punjab, India
| | - Amandeep Singh
- Department of Pharmaceutics, Indo Soviet Friendship College of Pharmacy, GT Road, Ghall Kalan, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, Indo Soviet Friendship College of Pharmacy, GT Road, Ghall Kalan, Punjab, India
| |
Collapse
|
22
|
Arthritis biosensing: Aptamer-antibody-mediated identification of biomarkers by ELISA. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Lee J, Lee JH, Mondal J, Hwang J, Kim HS, Kumar V, Raj A, Hwang SR, Lee YK. Magnetofluoro-Immunosensing Platform Based on Binary Nanoparticle-Decorated Graphene for Detection of Cancer Cell-Derived Exosomes. Int J Mol Sci 2022; 23:ijms23179619. [PMID: 36077015 PMCID: PMC9455968 DOI: 10.3390/ijms23179619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Multi-functionalized carbon nanomaterials have attracted interest owing to their excellent synergic properties, such as plasmon resonance energy transfer and surface-enhanced Raman scattering. Particularly, nanoparticle (NP)-decorated graphene (GRP) has been applied in various fields. In this study, silver NP (AgNP)- and magnetic iron oxide NP (IONP)-decorated GRP were prepared and utilized as biosensing platforms. In this case, AgNPs and GRP exhibit plasmonic properties, whereas IONPs exhibit magnetic properties; therefore, this hybrid nanomaterial could function as a magnetoplasmonic substrate for the magnetofluoro-immunosensing (MFI) system. Conversely, exosomes were recently considered high-potential biomarkers for the diagnosis of diseases. However, exosome diagnostic use requires complex isolation and purification methods. Nevertheless, we successfully detected a prostate-cancer-cell-derived exosome (PC-exosome) from non-purified exosomes in a culture media sample using Ag/IO-GRP and dye-tetraspanin antibodies (Ab). First, the anti-prostate-specific antigen was immobilized on the Ag/IO-GRP and it could isolate the PC-exosome from the sample via an external magnetic force. Dye-tetraspanin Ab was added to the sample to induce the sandwich structure. Based on the number of exosomes, the fluorescence intensity from the dye varied and the system exhibited highly sensitive and selective performance. Consequently, these hybrid materials exhibited excellent potential for biosensing platforms.
Collapse
Affiliation(s)
- Jaewook Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Korea
- Correspondence: (J.L.); (Y.-K.L.)
| | - Ji-Heon Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Jagannath Mondal
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science Brain Korea 21 Project, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Vinoth Kumar
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Akhil Raj
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Correspondence: (J.L.); (Y.-K.L.)
| |
Collapse
|
24
|
Zhou Q, Xu Z, Liu Z. Molecularly Imprinting–Aptamer Techniques and Their Applications in Molecular Recognition. BIOSENSORS 2022; 12:bios12080576. [PMID: 36004972 PMCID: PMC9406215 DOI: 10.3390/bios12080576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprinting and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer) prepared by this technique have higher stability, binding affinity and superior selectivity than conventional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer technologies have attracted considerable interest for the selective recognition of target molecules in complex sample matrices and have been used in molecular recognition such as antibiotics, proteins, viruses and pesticides. This review introduced the development of molecular imprinting–aptamer-combining technologies and summarized the mechanism of MIP–aptamer formation. Meanwhile, we discussed the challenges in preparing MIP–aptamer. Finally, we summarized the application of MIP–aptamer to the molecular recognition in disease diagnosis, environmental analysis, food safety and other fields.
Collapse
|