1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Robby AI, Jiang S, Jin EJ, Park SY. Electrochemical and Fluorescence MnO 2-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model. BIOSENSORS 2024; 14:357. [PMID: 39056633 PMCID: PMC11275033 DOI: 10.3390/bios14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal β-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea;
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
3
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
4
|
Li X, Zou X, Xu P, Pang M, Zhao L, Chen S, Peng Y, Liang S, Deng Z. A robust NIR fluorescence-activated probe for peroxynitrite imaging in cells and mice osteoarthritis models. Anal Biochem 2023; 682:115338. [PMID: 37802174 DOI: 10.1016/j.ab.2023.115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Osteoarthritis (OA) is the most common type of joint disease, which is difficult to treat, but early standardized diagnosis and treatment can effectively alleviate the pain and symptoms of patients. Therefore, it is important to construct an effective tool to assist in the early diagnosis and evaluation of the therapeutic effect of OA. In this work, a near-infrared (NIR) fluorescence-activated fluorescent probe, YB-1, was constructed for the evaluation of the diagnostic and therapeutic efficacy of OA via detection and imaging of the biomarker of ONOO- in inflammatory cells and mice osteoarthritis models. YB-1 exhibited high selectivity, high sensitivity, and a high ratio yield (I668/I0) fluorescence increasing (∼30 folds). Besides, YB-1 can be used effectively to image endogenous and exogenous ONOO- in living human chondrocytes cells (TC28a2), as well as to evaluate the effect of drug (Chrysosplenol D, CD) treatment in IL-1β-induced inflammatory cells model. Interestingly, YB-1 was available for OONO- imaging analysis in the collagenase-induced mice OA models and assessment of the effect of CD treatment in mice OA models, with good results. Thus, the newly constructed YB-1 is a powerful molecular tool for the diagnosis and treatment of OA-related diseases.
Collapse
Affiliation(s)
- Xiuyang Li
- Department of Orthopedics, Chongqing Geriatric Clinical Research Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Department of Orthopedics and Osteoarthrosis, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Xinrong Zou
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Xu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Meiling Pang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lulu Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shihan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongbo Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Sijing Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhongliang Deng
- Department of Orthopedics, Chongqing Geriatric Clinical Research Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
5
|
Liu X, Lei H, Hu Y, Zou X, Ran H, Cai Q, Huang J, Liu C. Construction of a mitochondria-targeted near-infrared fluorescence turn-on fluorescent probe for H 2S detection and imaging in living cells and drug-induced mice inflammatory models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123574. [PMID: 39492384 DOI: 10.1016/j.saa.2023.123574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
The mechanism of the interaction between the signaling molecule hydrogen sulfide (H2S) and mitochondria and its related diseases is difficult to elusive. Thus it is urgent to develop effective methods and tools to visualize H2S in mitochondria and in vivo. In this work, a robust mitochondrial-targeting NIR fluorescence "turn-on" fluorescent probe, NIR1, was reported, by adopting a Changsha-OH near-infrared (NIR) dye as the NIR fluorophore, a 2,4-dinitrophenyl (DNB) moiety as both the responsive site of the H2S and the fluorescence quenching group of the NIR fluorophore, and an oxygen onium ion site as the mitochondria-targeting group, for the detection and analysis of H2S in living Raw 264.7 cells and drug-induced inflammatory mice models. NIR1 exhibited a much smaller background fluorescence signal in lack of H2S, whereas strong enhanced NIR fluorescence "turn-on" was detected in the presence of H2S, these results showed a low detection limit (30.2 nM) for quantitative detection of H2S in aqueous solutions with concentrations ranging from 0 to 1 μM H2S. These characteristics were beneficial to direct detection and imaging analysis of H2S in complicated biosystems. Therefore, first, NIR1 was applied for the NIR detection of mitochondrial H2S in living inflammatory cells with satisfactory results. Finally, NIR1 was applied to detect H2S in drug-induced inflammatory mice models with agreeable results, demonstrating that NIR1 as a molecular tool has an excellent practical application in the study of the interaction between inflammatory and H2S.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China.
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Xinrong Zou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongyan Ran
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Qinuo Cai
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| |
Collapse
|
6
|
Luo P, Gao FQ, Sun W, Li JY, Wang C, Zhang QY, Li ZZ, Xu P. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Mil Med Res 2023; 10:31. [PMID: 37443101 DOI: 10.1186/s40779-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability, thus adversely affecting locomotion ability and life quality. Consequently, good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA. Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging. Herein, we review the fluorescent probes developed for the detection and imaging of RA biomarkers, namely reactive oxygen/nitrogen species (hypochlorous acid, peroxynitrite, hydroxyl radical, nitroxyl), pH, and cysteine, and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fu-Qiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Sun
- Department of Orthopaedic Surgery of the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun-You Li
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Qing-Yu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhi-Zhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
7
|
Wang Y, Zhao L, Xie L, Pang M, Zhang Y, Ran H, Huang J, Wang J, Tao Y, Lyu S. Construction of a robust turn-on fluorescence NIR sensor for rapid detection and imaging of ONOO - in inflammatory models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122624. [PMID: 36933443 DOI: 10.1016/j.saa.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Peroxynitrite (OONO-) is closely related to the occurrence and development of health and inflammatory diseases. The physiological and pathological results of OONO- are related to the local concentration of ONOO-. Therefore, to develop of a simple, rapid and reliable OONO- detection tool is badly needed. In this work, we developed a small-molecule near-infrared (NIR) turn-on fluorescence sensor (NN1), harnessing a well-known response group phenylboronic acid response toward OONO-. It shows high detection sensitivity and yields a ratio (I658/I0) fluorescence enhancement (∼280-fold). In addition, NN1 can be effectively used to detect endogenous and exogenous ONOO- in living inflammatory cells. Notably, NN1 can be applied to OONO- imaging analysis in drug-induced inflammatory mice model with satisfactory results. Therefore, NN1 is a robust molecular biological tool, which has a good prospect in the study of ONOO- and the occurrence and development of inflammatory diseases.
Collapse
Affiliation(s)
- Yan Wang
- Phase I Clinical Trial Ward, Department of Planning and Finance, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhao
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Meiling Pang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongyan Ran
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Junyi Wang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Tao
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Shunqiao Lyu
- Phase I Clinical Trial Ward, Department of Planning and Finance, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
8
|
Lei P, Li M, Dong C, Shuang S. Multifunctional Mitochondria-Targeting Near-Infrared Fluorescent Probe for Viscosity, ONOO -, Mitophagy, and Bioimaging. ACS Biomater Sci Eng 2023; 9:3581-3589. [PMID: 37252846 DOI: 10.1021/acsbiomaterials.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Irregularities in mitochondrial viscosity and peroxynitrite (ONOO-) concentration can lead to mitochondrial dysfunction. It is still a great challenge to develop near-infrared (NIR) fluorescent probes to simultaneously detect viscosity, endogenous ONOO-, and mitophagy. Herein, a multifunctional mitochondria-targeting NIR fluorescent probe P-1 was first synthesized for simultaneously detecting viscosity, ONOO-, and mitophagy. P-1 used quinoline cations as a mitochondrial targeting moiety, arylboronate as an ONOO- responsive group, and detected the change of viscosity by the twisted internal charge transfer (TICT) mechanism. The probe has an excellent response to the viscosity during inflammation by lipopolysaccharides (LPSs) and mitophagy induced by starvation at 670 nm. The viscosity changes of the probe induced by nystatin in zebrafish showed that P-1 was able to detect microviscosity in vivo. P-1 also showed good sensitivity with a detection limit of 6.2 nM for ONOO- detection and was successfully applied to the endogenous ONOO- detection in zebrafish. Moreover, P-1 has the ability to distinguish between cancer cells and normal cells. All of these features make P-1 a promising candidate to detect mitophagy and ONOO- -associated physiological and pathological processes.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Lan Y, Zhang K, Wang F, Zhang Y, Yan M, Zuo Y. Polysiloxane-based hyperbranched fluorescent probe for dynamic visualization of HClO in lysosomes and vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122527. [PMID: 36848860 DOI: 10.1016/j.saa.2023.122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
As a type of reactive oxygen species, hypochlorous acid (HClO) is associated with inducing oxidative stress in lysosomes. Once its concentration is abnormal, it may lead to lysosomal rupture and subsequent apoptosis. Meanwhile, this may provide new inspiration for cancer treatment. Therefore, it is crucial to visualize HClO in lysosomes at the biological level. So far, numerous fluorescent probes have emerged to identify HClO. However, fluorescent probes that combine low biotoxicity with lysosome-targetable properties are scarce. In this paper, hyperbranched polysiloxanes were modified by embedding perylenetetracarboxylic anhydride red fluorescent cores with naphthalimide derivative green fluorophores to synthesize novel fluorescent probe (PMEA-1). PMEA-1 was a lysosome-targetable fluorescent probe with unique dual emission, high biosafety, and good response speed. PMEA-1 exhibited excellent sensitivity and responsiveness to HClO in PBS solution and could dynamically visualize HClO fluctuations in cells and zebrafish. Simultaneously, PMEA-1 also had monitoring ability for HClO produced in the process of cellular ferroptosis. In addition, the bioimaging results indicated that PMEA-1 was capable of accumulating within the lysosomes. We anticipate that PMEA-1 will broaden the application of silicon-based fluorescent probes in the field of fluorescence imaging.
Collapse
Affiliation(s)
- Ying Lan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Fanfan Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yafang Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
10
|
Ou P, Ran H, Ye X, Wang J, Pang M, Zhao L, Chen M, Li X, Ma Y, Wang P, Chen J, Luo Q, Peng Y. A robust high selectivity fluorescence turn-on nanoprobe for peroxynitrite detection in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122381. [PMID: 36689907 DOI: 10.1016/j.saa.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Changed levels of intracellular peroxynitrite anion (ONOO-) are closely related to the occurrence and development of inflammation. Specific imaging of ONOO- at sites of inflammation can be of great significance not only for inflammation diagnosis but also for obtaining a deeper understanding of the role of ONOO- in inflammation. Therefore, there is an urgent need for constructing some reliable tools to study the relationship between ONOO- and inflammation in biosystems. In this work, we developed a robust high selectivity fluorescence turn-on nanoprobe (Rhb-ONOO) for inflammation-targeted imaging of ONOO-. The Rhb-ONOO was obtained by self-assembly of amphiphilic Rhb-ONOO, which was constructed by the condensation reaction of the hydrophobic, ONOO--response and deep red-emitting fluorophore (Rhb) with hydrophilic biopolymer glycol chitosan (GC). Rhb-ONOO showed rapid response towards ONOO- during 60 s, high sensitivity with 19-fold enhancement of fluorescence intensity ratio (I628/I0), and excellent selectivity towards ONOO- over other analytes as well as a good linear relationship was observed between the I628/I0 and the ONOO- concentration range 0-1 μM, with an excellent limit of detection (LOD) of 33 nM. Impressively, it was successfully employed Rhb-ONOO for ONOO- imaging in living inflammatory cells and drug-induced inflammatory mice, illustrating nanoprobe Rhb-ONOO has excellent potential for further study ONOO--related inflammatory diseases.
Collapse
Affiliation(s)
- Pinghua Ou
- Department of Stomatology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Hongyan Ran
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoping Ye
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Junyi Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Meiling Pang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Meizi Chen
- Department of Respiratory Medicine, The First People's Hospital of Chenzhou, Chenzhou 423000, PR China
| | - Xiong Li
- School of Clinical Pharmacy and the First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongping Ma
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China
| | - Quan Luo
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, PR China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
11
|
Liu X, Lei H, Hu Y, Fan X, Zhang Y, Xie L, Huang J, Cai Q. A turn-on fluorescent nanosensor for H 2S detection and imaging in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122739. [PMID: 37084684 DOI: 10.1016/j.saa.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 μM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China.
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Xinyao Fan
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qinuo Cai
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
12
|
Shi A, Zeng Y, Xin D, Zhou Y, Zhao L, Peng J. Real-Time Visualization of the Antioxidative Potency of Drugs for the Prevention of Myocardium Ischemia-Reperfusion Injury by a NIR Fluorescent Nanoprobe. ACS Sens 2022; 7:3867-3875. [PMID: 36441913 DOI: 10.1021/acssensors.2c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The burst of the reactive oxygen species (ROS) is the culprit of myocardial ischemia-reperfusion injury. As direct ROS scavengers, antioxidants are clinically documented drugs for the prevention of reperfusion injury. However, some drugs give disappointing therapeutic performance despite their good in vitro effects. Therefore, in vivo assessments are necessary to screen the antioxidants before clinical trials. However, traditional methods such as histological study require invasive and complicated preprocessing of the biological samples, which may fail to reflect the actual level of the unstable ROS with a very short lifetime. Peroxynitrite (ONOO-) is a characteristic endogenous ROS produced during reperfusion. Here, we modified the ONOO--responsive near-infrared fluorescent probe on a myocardium-targeting silica cross-linked micelle to prepare a nanoprobe for the real-time monitoring of ONOO- during coronary reperfusion. A ROS-stable cyanine dye was co-labeled as an internal reference to achieve ratiometric sensing. The nanoprobe can passively target the infarcted myocardium and monitor the generation of ONOO- during reperfusion in real-time. The antioxidants, carvedilol, atorvastatin, and resveratrol, were used as model drugs to demonstrate the capability of the nanoprobe to evaluate the antioxidative potency in situ. The drugs were either loaded and delivered by the nanoprobe to compare their in vivo efficacy under similar concentrations or administered intraperitoneally as a free drug to take their pharmacokinetics into account. The imaging results revealed that pharmacokinetics might be the determinant factor that influences the efficacy of the antioxidants.
Collapse
Affiliation(s)
- Aiping Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuling Zeng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Dongxu Xin
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
13
|
Zhou Y, Zeng J, Yang Q, Zhou L. Rational construction of a fluorescent sensor for simultaneous detection and imaging of hypochlorous acid and peroxynitrite in living cells, tissues and inflammatory rat models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121691. [PMID: 35917618 DOI: 10.1016/j.saa.2022.121691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Modern medical research indicates that hypochlorous acid (HClO) and peroxynitrite (ONOO-) are important biomarkers of oxidative stress. However, the up- or down-regulation of HClO or ONOO- has been closely associated with the occurrence and development of various diseases. In order to investigate the intrinsic entanglement relationship between HClO and ONOO- and their relationship with the occurrence and development of inflammation, it is very valuable to develop fluorescent sensors that are capable of displaying different signals towards HClO, ONOO- and HClO/ONOO-. In this work, we rationally design and construct a novel robust small organic molecule fluorescent sensor (RhNp-ClO-ONOO) towards ONOO-, HClO and HClO/ONOO- with green, red, and green-red three different fluorescent signal outputs, respectively. RhNp-ClO-ONOO has fast responsive time for HClO (∼60 s) and ONOO- (∼20 s). Also it has markedly low detection limits for HClO (∼25.3 nM) and ONOO- (12.4 nM) respectively. In addition, RhNp-ClO-ONOO could be further shown to detect endogenous HClO/ONOO- in living cells, inflammatory tissues and rat model successfully. Therefore, this novel fluorescent sensor with double responsive moiety can offer a powerful tool for studying the role of HClO and ONOO- and the occurrence and development of inflammatory diseases.
Collapse
Affiliation(s)
- Yizhuang Zhou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Jiaqi Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, Guangxi 541001, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
14
|
Xiao-Ping W, Rong L, Min Z, Lulu Z, Hongyan R, Meiling P, Gao-Hui Z. Coumarin-based fluorescence turn-on probes for high selectivity peroxynitrite detection and imaging in living cells and γ-carrageenan-induced inflammatory tissue and mice. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Xie C, Zhou Y, Luo K, Yang Q, Tan L, Zhou L. Activated Two-Photon Near-Infrared Ratiometric Fluorescent Nanoprobe for ONOO – Detection and Early Diagnosis and Assessment of Liver Injury. Anal Chem 2022; 94:15518-15524. [DOI: 10.1021/acs.analchem.2c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yizhuang Zhou
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|