1
|
Wei K, Zhang L, Li N, Gao K, Li X, Li J, Wang S, Mao X. A colorimetric biosensor composed of split aptamers and mannan oligosaccharide nanozyme to monitor synthetic His-tagged food biomolecules. Food Chem 2025; 466:142108. [PMID: 39612832 DOI: 10.1016/j.foodchem.2024.142108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
Food synthetic biology is garnering increasing attention for its potential to generate bioactive components. His-tag is one of the most popular tags used in food synthetic biology. Herein, His-tag, His-tagged proteins, and His-tagged peptides were adopted as the model targets, and a commonly used biosensor was developed to monitor His-tagged food biomolecules, using split aptamers as specific recognition probes and nanozyme as the transduction element. A strategy to generate high-affinity split aptamers was proposed, obtaining a pair of split aptamers for His-tag (Kd = 132 nM). AuNPs-mannan oligosaccharide nanozyme was fabricated and combined with the split aptamers to develop the biosensor. The functional mechanism of the probes and the nanozyme was revealed. The biosensor demonstrated good sensitivity, selectivity, and practicability when analyzing synthetic His-tagged proteins and peptides in real-world samples, with a limit of detection of 12.44 nM. The strategies provide robust reference for developing analytical methods for synthetic biomolecules.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Nan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Kunpeng Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| |
Collapse
|
2
|
Yu L, Yang C, Cheng S, Jiang Q, Pang Y, Shen X. Top-Down Computational Design of Molecule Recognition Peptides (MRPs) for Enzyme-Peptide Self-Assembly and Chemiluminescent Biosensing. Anal Chem 2025; 97:355-364. [PMID: 39705506 DOI: 10.1021/acs.analchem.4c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The recognition of small molecules plays a crucial role in disease diagnosis, environmental assessment, and food safety. Currently, their recognition elements predominantly rely on antibodies and aptamers while suffering from a limitation of the complex screening process due to the low immunogenicity of small molecules. Herein, we present a top-down computational design strategy for molecule recognition peptides (MRPs) for enzyme-peptide self-assembly and chemiluminescence biosensing. Taking ochratoxin A (OTA) as an illustrative example, human serum albumin (HSA) was selected as the parental protein due to its high affinity for OTA binding. Through iterative computational simulations involving the binding domain of the HSA-OTA complex, our strategy identified a specific 15-mer MRP (RLKCASLKFGERAFK), which possesses excellent binding affinity (38.02 ± 1.24 nM) against OTA. Molecular dynamics simulations revealed that the 15-mer MRP unfolds into a flexible short chain with high affinity for OTA, but exhibits weak or no binding affinity with five structurally similar mycotoxins. Furthermore, we developed a novel enzyme-peptide self-assembly approach mediated by calcium(II) to obtain nanoflowers, which integrates both the recognition element (MRP) and the signal translator (enzyme) for chemiluminescence biosensing. The assembled nanoflowers allow MRPs to be directly utilized as a tracer for OTA biosensing without labeling or secondary antibodies. This computational-to-application approach offers a new route for small-molecule recognition.
Collapse
Affiliation(s)
- Lihong Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chenglin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuting Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qianqian Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuehong Pang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofang Shen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
3
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
Yu H, Feng M, Liu C, Wang F, Pan S, Sui G, Jing W, Cheng X. CRISPR-Cas12a2-based rapid and sensitive detection system for target nucleic acid. Int J Biol Macromol 2024; 290:138996. [PMID: 39706401 DOI: 10.1016/j.ijbiomac.2024.138996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Infectious diseases are extremely important public health issues, where the design of effective, rapid, and convenient detection platforms is critical. In this study, we coupled SuCas12a2, a novel Cas12 family RNA-targeting nuclease, with conventional PCR and recombinase polymerase amplification (RPA), respectively, to develop novel detection approaches, named PCR-SuCas12a2 and RPA-SuCas12a2. SuCas12a2 possesses collateral cleavage activity and cuts the additional single-stranded RNA (ssRNA) added to the reaction system once the ternary complex RNA-SuCas12a2-CRISPR RNA (crRNA) is formed. SuCas12a2 is specifically activated, where the cleaved fluorescent-labeled probes release fluorescent signals, with the strength of the fluorescent signal being proportional to the concentration of nucleic acids specifically bound to crRNA. Simultaneous transcription and SuCas12a2 detection can be performed in a single tube by introducing the T7 promoter sequence into the forward primer. Entamoeba histolytica (E. histolytica) and Mycoplasma pneumoniae (M. pneumoniae) were used as proof specimens to evaluate the performance of the platform. PCR-SuCas12a2 has excellent capabilities, including high specificity with no cross-reactivity from other species and ultra-sensitivity that achieves a detection of one copy per reaction for E. histolytica and M. pneumoniae. However, the sensitivity of the RPA-SuCas12a2 assay was 102 copies per reaction, which was inferior to PCR-SuCas12a2. Clinical samples were obtained from suspected infection patients of E. histolytica and M. pneumoniae, and used to evaluate the systems demonstrated 100 % specificity. The technique shows robust performance and suggests great potential for point-of-care testing of other pathogens to facilitate effective management and control of the spread of diseases.
Collapse
Affiliation(s)
- Helin Yu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Chuncao Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Feifei Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Shaokun Pan
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Guodong Sui
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China.
| | - Xunjia Cheng
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China.
| |
Collapse
|
5
|
Xie S, Yue Y, Yang F. Recent Advances in CRISPR/Cas System-Based Biosensors for the Detection of Foodborne Pathogenic Microorganisms. MICROMACHINES 2024; 15:1329. [PMID: 39597141 PMCID: PMC11596558 DOI: 10.3390/mi15111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Foodborne pathogens pose significant risks to food safety. Conventional biochemical detection techniques are facing a series of challenges. In recent years, with the gradual development of CRISPR (clustered regularly interspaced short palindromic repeats) technology, CRISPR/Cas system-based biosensors, a newly emerging technology, have received much attention from researchers because of their supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have a broad application in the field of environmental monitoring, food safety, and point-of-care diagnosis, they remain in high demand to summarize recent advances in CRISPR/Cas system-based biosensors for foodborne pathogen detection. In this paper, we briefly classify and discuss the working principles of CRISPR/Cas systems with trans-cleavage activity in applications for the detection of foodborne pathogenic microorganisms. We highlight the current status, the unique feature of each CRISPR system and CRISPR-based biosensing platforms, and the integration of CRISPR-Cas with other techniques, concluding with a discussion of the advantages, disadvantages, and future directions.
Collapse
Affiliation(s)
- Sanlei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yuehong Yue
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| |
Collapse
|
6
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
7
|
Jiao J, Zeng D, Wu Y, Li C, Mo T. Programmable and ultra-efficient Argonaute protein-mediated nucleic acid tests: A review. Int J Biol Macromol 2024; 278:134755. [PMID: 39147338 DOI: 10.1016/j.ijbiomac.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.
Collapse
Affiliation(s)
- Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chentao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
8
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Wei Y, Hu Y, Wang L, Liu C, Abdullaewich YS, Yang Z, Mao H, Wan Y. Ultrasensitive detection of Salmonella typhi using a PAM-free Cas14a-based biosensor. Biosens Bioelectron 2024; 259:116408. [PMID: 38781698 DOI: 10.1016/j.bios.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The effectiveness of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas14a1, widely utilized for pathogenic microorganism detection, has been limited by the requirement of a protospacer adjacent motif (PAM) on the target DNA strands. To overcome this limitation, this study developed a Single Primer isothermal amplification integrated-Cas14a1 biosensor (SPCas) for detecting Salmonella typhi that does not rely on a PAM sequence. The SPCas biosensor utilizes a novel primer design featuring an RNA-DNA primer and a 3'-biotin-modified primer capable of binding to the same single-stranded DNA (ssDNA) in the presence of the target gene. The RNA-DNA primer undergoes amplification and is blocked at the biotin-modified end. Subsequently, strand replacement is initiated to generate ssDNA assisted by RNase H and Bst enzymes, which activate the trans-cleavage activity of Cas14a1 even in the absence of a PAM sequence. Leveraging both cyclic chain replacement reaction amplification and Cas14a1 trans-cleavage activity, the SPCas biosensor exhibits a remarkable diagnostic sensitivity of 5 CFU/mL. Additionally, in the assessment of 20 milk samples, the SPCas platform demonstrated 100% diagnostic accuracy, which is consistent with the gold standard qPCR. This platform introduces a novel approach for developing innovative CRISPR-Cas-dependent biosensors without a PAM sequence.
Collapse
Affiliation(s)
- Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanzhao Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Luchao Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuldoshov Sherzod Abdullaewich
- Department of Cellulose and its Derivatives Chemistry and Technology, Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, str. A. Khodiriy 7b, Tashkent, 100128, Uzbekistan
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China.
| | - Haimei Mao
- Products Quality Supervision and Testing Institute of Hainan Province, Haikou, 570003, China.
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| |
Collapse
|
11
|
Gu X, Tang Q, Kang X, Ji H, Shi X, Shi L, Pan A, Zhu Y, Jiang W, Zhang J, Liu J, Wu M, Wu L, Qin Y. A portable CRISPR-Cas12a triggered photothermal biosensor for sensitive and visual detection of Staphylococcus aureus and Listeria monocytogenes. Talanta 2024; 271:125678. [PMID: 38277968 DOI: 10.1016/j.talanta.2024.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.
Collapse
Affiliation(s)
- Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xiuying Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Linyi Shi
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Anli Pan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mingmin Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
12
|
Rafiq MS, Shabbir MA, Raza A, Irshad S, Asghar A, Maan MK, Gondal MA, Hao H. CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. BioDrugs 2024; 38:387-404. [PMID: 38605260 DOI: 10.1007/s40259-024-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Shahzad Rafiq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Ahmed Raza
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Shoaib Irshad
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mushtaq Ahmed Gondal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Li X, Wang H, Qi X, Ji Y, Li F, Chen X, Li K, Li L. PCR Independent Strategy-Based Biosensors for RNA Detection. BIOSENSORS 2024; 14:200. [PMID: 38667193 PMCID: PMC11048163 DOI: 10.3390/bios14040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
RNA is an important information and functional molecule. It can respond to the regulation of life processes and is also a key molecule in gene expression and regulation. Therefore, RNA detection technology has been widely used in many fields, especially in disease diagnosis, medical research, genetic engineering and other fields. However, the current RT-qPCR for RNA detection is complex, costly and requires the support of professional technicians, resulting in it not having great potential for rapid application in the field. PCR-free techniques are the most attractive alternative. They are a low-cost, simple operation method and do not require the support of large instruments, providing a new concept for the development of new RNA detection methods. This article reviews current PCR-free methods, overviews reported RNA biosensors based on electrochemistry, SPR, microfluidics, nanomaterials and CRISPR, and discusses their challenges and future research prospects in RNA detection.
Collapse
Affiliation(s)
- Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Haoqian Wang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China;
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Kai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| |
Collapse
|
14
|
Li Z, Fu J, Wang L, Zhou Y, Li J, He S. Transformation of proteins into reproductive DNA templates for sensitive quantification of PSA. Talanta 2024; 267:125206. [PMID: 37716239 DOI: 10.1016/j.talanta.2023.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
A switch DNA template was designed to transform proteins into linear DNA strands of 97 nt. The linear DNA was subjected to quantitative polymerase chain reaction (qPCR) to determine the initial copy number, which correlated positively with the protein concentration. A restriction endonuclease was used to remove background amplification. Using prostate-specific antigen (PSA) as a protein model, the established method quantified PSA in the range of 10-18-10-13 mol/mL (detection limit = 0.034 pg/mL) with an R2 of 0.974. Good repeatability and specificity of the method were demonstrated. The established method was successfully applied for the quantification of serum PSA levels in women. Significant differences in PSA levels were observed between healthy participants and polycystic ovary syndrome patients.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Jingjing Fu
- Guangxi Medical College, Nanning, Guangxi, 530021, PR China
| | - Lijuan Wang
- The First Affiliated Hospital of Guangxi Medical College, Guangxi Medical College, Nanning, Guangxi, 530021, PR China
| | - Yingzhu Zhou
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Jinyan Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
15
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Chen J, Ren B, Wang Z, Wang Q, Bi J, Sun X. Multiple Isothermal Amplification Coupled with CRISPR-Cas14a for the Naked-eye and Colorimetric Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55423-55432. [PMID: 38014527 DOI: 10.1021/acsami.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Aflatoxin B1 (AFB1) is highly toxic and challenging to remove, posing significant risks to both human health and economic development. Therefore, there is an urgent need to develop rapid, simple, and sensitive detection technologies. In this study, we introduce a naked-eye and colorimetric method based on multiple isothermal amplifications coupled with CRISPR-Cas14a and investigate its biosensing properties. This technique utilizes composite nanoprobes (MAPs) comprising magnetic nanoparticles and gold nanoparticles. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles , which triggers multiple isothermal amplification. This converts trace amounts of the toxin into a large quantity of DNA signal. Upon specific activation of the CRISPR-Cas14a complex, the MAPs are cleaved, resulting in significant changes in both color and colorimetric signal. The method demonstrates acceptable sensitivity, with a detection limit of 31.90 pg mL-1 and a wide detection range from 0.05 to 10 ng mL-1. Furthermore, the assay exhibits satisfactory specificity and high accuracy when it is applied to practical samples. Our approach offers a universal sensing platform with potential applications in food safety, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Beizhuo Ren
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
17
|
He Y, Hu Q, San S, Kasputis T, Splinter MGD, Yin K, Chen J. CRISPR-based Biosensors for Human Health: A Novel Strategy to Detect Emerging Infectious Diseases. Trends Analyt Chem 2023; 168:117342. [PMID: 37840598 PMCID: PMC10571337 DOI: 10.1016/j.trac.2023.117342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Infectious diseases (such as sepsis, influenza, and malaria), caused by various pathogenic bacteria and viruses, are widespread across the world. Early and rapid detection of disease-related pathogens is necessary to reduce their spread in the world and prevent their potential global pandemics. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, as the next-generation molecular diagnosis technique, holds immense promise in the detection of infectious diseases because of its remarkable advantages, including supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have been developed for application in environmental monitoring, food safety, and point-of-care diagnosis, there remains a critical need to summarize and explore their potential in human health. This review aims to address this gap by focusing on the latest advancements in CRISPR-based biosensors for infectious disease detection. We provide an overview of the current status, pre-amplification methods, the unique feature of each CRISPR system, and the design of CRISPR-based biosensing strategies to detect disease-associated nucleic acids. Last but not least, the review analyzes the current challenges and provides future perspectives, which will contribute to developing more effective CRISPR-based biosensors for human health.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Samantha San
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Liu J, Lu D, Wang J. A simple, sensitive and colorimetric assay for Pseudomonas aeruginosa infection analysis. Biotechniques 2023; 75:210-217. [PMID: 37881830 DOI: 10.2144/btn-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Skin and soft tissue infections caused by Pseudomonas aeruginosa are common acquired diseases in postpartum care. Many methods have been developed in recent years for detecting P. aeruginosa, but they are criticized for the drawbacks of labor-intensiveness, complicated operation and high cost. Here, a simple, sensitive and colorimetric assay for P. aeruginosa detection is described. The approach displays a green color for positive samples and colorless for target-free samples. The approach exhibits a wide detection range and a low limit of detection of 45 CFU/ml. Thus, the developed ligation-initiated multiple-signal amplification method may be used for on-site testing of pathogenic bacteria and assist in the early diagnosis of postpartum care skin infections.
Collapse
Affiliation(s)
- Jie Liu
- Obstetric Clinic, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Dan Lu
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Junyuan Wang
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
19
|
Tan X, Yang X, Qiao Y, Wei Y, Shang W, Cai H, Luo X, Hou H, Dzantiev BB, Wan Y, Song F, Li J. Ligation-dependent Cas14a1-Activated biosensor for one-pot pathogen diagnostic. Anal Chim Acta 2023; 1271:341470. [PMID: 37328250 DOI: 10.1016/j.aca.2023.341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Pathogen identification requires nucleic acid diagnosis with simple equipment and fast manipulation. Our work established an all-in-one strategy assay with excellent sensitivity and high specificity, Transcription-Amplified Cas14a1-Activated Signal Biosensor (TACAS), for the fluorescence-based bacterial RNA detection. The DNA as a promoter probe and a reporter probe directly ligated via SplintR ligase once specifically hybridized to the single-stranded target RNA sequence, with the ligation product transcribed into Cas14a1 RNA activators by T7 RNA polymerase. This forming sustained isothermal one-pot ligation-transcription cascade produced RNA activators constantly and enabled Cas14a1/sgRNA complex to generate fluorescence signal, thus leading to a sensitive detection limit of 1.52 CFU mL-1E. coli within 2 h of incubation time. TACAS was applied in contrived E. coli infected fish and milk samples, and a significant signal differentiation between positive (infected) and negative (uninfected) samples was reached. Meanwhile, E. coli colonization and transmit time in vivo were explored and the TACAS assay promoted the understanding of the infection mechanisms of the E. coli infection, demonstrating an excellent detection capability.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiufen Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yuefeng Qiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Wenkai Shang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Huiying Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xidan Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Ma L, Zhang W, Yin L, Li Y, Zhuang J, Shen L, Man S. A SERS-signalled, CRISPR/Cas-powered bioassay for amplification-free and anti-interference detection of SARS-CoV-2 in foods and environmental samples using a single tube-in-tube vessel. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131195. [PMID: 36963196 PMCID: PMC10005974 DOI: 10.1016/j.jhazmat.2023.131195] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The pandemic of COVID-19 creates an imperative need for sensitive and portable detection of SARS-CoV-2. We devised a SERS-read, CRISPR/Cas-powered nanobioassay, termed as OVER-SARS-CoV-2 (One-Vessel Enhanced RNA test on SARS-CoV-2), which enabled supersensitive, ultrafast, accurate and portable detection of SARS-CoV-2 in a single vessel in an amplification-free and anti-interference manner. The SERS nanoprobes were constructed by conjugating gold nanoparticles with Raman reporting molecular and single-stranded DNA (ssDNA) probes, whose aggregation-to-dispersion changes can be finely tuned by target-activated Cas12a though trans-cleavage of linker ssDNA. As such, the nucleic acid signals could be dexterously converted and amplified to SERS signals. By customizing an ingenious vessel, the steps of RNA reverse transcription, Cas12a trans-cleavage and SERS nanoprobes crosslinking can be integrated into a single and disposal vessel. It was proved that our proposed nanobioassay was able to detect SARS-CoV-2 as low as 200 copies/mL without any pre-amplification within 45 min. In addition, the proposed nanobioassay was confirmed by clinical swab samples and challenged for SARS-CoV-2 detection in simulated complex environmental and food samples. This work enriches the arsenal of CRISPR-based diagnostics (CRISPR-Dx) and provides a novel and robust platform for SARS-CoV-2 decentralized detection, which can be put into practice in the near future.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianwen Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
21
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Yang R, Zhao L, Wang X, Kong W, Luan Y. Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Crit Rev Anal Chem 2023; 54:2670-2687. [PMID: 37029907 DOI: 10.1080/10408347.2023.2197062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Efficient and sensitive detection of targets is one of the motivations for constant development and innovation of various biosensors. CRISPR-Cas12a, a new generation of gene editing tools, has shown excellent application potential in biosensor design and construction. By combining with the specific recognition element-aptamer, a single-stranded oligonucleotide obtained by systematic evolution of ligands by exponential enrichment (SELEX) in vitro screening, CRISPR-Cas12a also shows superior performance non-nucleic acid targets detection, such as small molecules, proteins, virus and pathogenic bacteria. However, aptamer and CRISPR-Cas12a (CRISPR-Cas12a/Apt) still face some problems in non-nucleic acid target detection, such as single signal response mode and narrow linear range. The development of diverse CRISPR-Cas12a/Apt biosensors is necessary to meet the needs of various detection environments. In this review, the working principle of CRISPR-Cas12a/Apt was introduced and recent progress in CRISPR-Cas12a/Apt in the application of non-nucleic acid target detection was summarized. Moreover, the requirements of critical parameters such as crRNA sequence, activator sequence, and reaction system in the design of CRISPR-Cas12a/Apt biosensors were discussed, which could provide the reference for the design of efficient and sensitive novel non-nucleic acid target biosensors. In addition, the challenges and prospects of CRISPR-Cas12a/Apt-based biosensor were further presented.
Collapse
Affiliation(s)
- Ruiqi Yang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhao
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Xinjie Wang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Weijun Kong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yunxia Luan
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| |
Collapse
|
23
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
24
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
25
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
27
|
Zhang X, Peng Y, Yao L, Shang H, Zheng Z, Chen W, Xu J. Self-Assembly of Multivalent Aptamer-Tethered DNA Monolayers Dedicated to a Fluorescence Polarization-Responsive Circular Isothermal Strand Displacement Amplification for Salmonella Assay. Anal Chem 2023; 95:2570-2578. [PMID: 36653941 DOI: 10.1021/acs.analchem.2c05448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pathogenic bacteria are pathogens widely spread that are capable of causing mild to life-threatening diseases in human beings or other organisms. Rationally organizing the simple helical motif of double-stranded DNA (dsDNA) tiles into designed ensemble structures with architecturally defined collective properties could lead to promising biosensing applications for pathogen detection. In this work, we facilely engineered multivalent hairpin aptamer probe-tethered DNA monolayers (MHAP-DNA monolayers) and applied them to build a fluorescence polarization-responsive circular isothermal strand displacement amplification (FP-CSDA) for Salmonella assay. In this system, the MHAP-DNA monolayers were constructed based on a dsDNA tile-directed self-assembly. A FAM-labeled reporting probe (RPFAM) with an inherent low FP signal serves as the signaling unit. The presence of target Salmonella leads to the trapping of F RPFAM into the super DNA monolayers via a target-triggered CSDA to peel off the tethered hairpin-structured aptamer probes (HAPs) responsible for the binding of RPFAM. As a result, the FP signal of the FAM fluorophore can be remarkably amplified due to the recycling of target Salmonella and the capacity of structural DNA materials to strongly restrict the free rotation of the FAM fluorophore but without a fluorescence quenching effect. Experimental results demonstrate that the FP assay is able to detect Salmonella with a low limit of detection (LOD) of 7.2 × 100 CFU/mL and high specificity. As a proof-of-concept study, we envision our study using DNA nanoarchitecture as the foundation to modulate CSDA-based FP assays, promising to open up a new avenue for disease diagnosis, food safety detection, and biochemical studies.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yubo Peng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
28
|
Li H, Xie Y, Chen F, Bai H, Xiu L, Zhou X, Guo X, Hu Q, Yin K. Amplification-free CRISPR/Cas detection technology: challenges, strategies, and perspectives. Chem Soc Rev 2023; 52:361-382. [PMID: 36533412 DOI: 10.1039/d2cs00594h] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rapid and accurate molecular diagnosis is a prerequisite for precision medicine, food safety, and environmental monitoring. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)-based detection, as a cutting-edged technique, has become an immensely effective tool for molecular diagnosis because of its outstanding advantages including attomolar level sensitivity, sequence-targeted single-base specificity, and rapid turnover time. However, the CRISPR/Cas-based detection methods typically require a pre-amplification step to elevate the concentration of the analyte, which may produce non-specific amplicons, prolong the detection time, and raise the risk of carryover contamination. Hence, various strategies for target amplification-free CRISPR/Cas-based detection have been developed, aiming to minimize the sensitivity loss due to lack of pre-amplification, enable detection for non-nucleic acid targets, and facilitate integration in portable devices. In this review, the current status and challenges of target amplification-free CRISPR/Cas-based detection are first summarized, followed by highlighting the four main strategies to promote the performance of target amplification-free CRISPR/Cas-based technology. Furthermore, we discuss future perspectives that will contribute to developing more efficient amplification-free CRISPR/Cas detection systems.
Collapse
Affiliation(s)
- Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Huiwen Bai
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd St., Philadelphia, Pennsylvania, USA
| | - Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Xiaonong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Gao H, Shang Z, Chan SY, Ma D. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ Sci B 2022; 23:881-898. [PMID: 36379609 PMCID: PMC9676091 DOI: 10.1631/jzus.b2200068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infectious diseases cause great economic loss and individual and even social anguish. Existing detection methods lack sensitivity and specificity, have a poor turnaround time, and are dependent on expensive equipment. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has been widely used in the detection of pathogens that cause infectious diseases owing to its high specificity, sensitivity, and speed, and good accessibility. In this review, we discuss the discovery and development of the CRISPR-Cas system, summarize related analysis and interpretation methods, and discuss the existing applications of CRISPR-based detection of infectious pathogens using Cas proteins. We conclude the challenges and prospects of the CRISPR-Cas system in the detection of pathogens.
Collapse
Affiliation(s)
- Hongdan Gao
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China.
| |
Collapse
|
30
|
Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
32
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Wang L, Lin X, Liu T, Zhang Z, Kong J, Yu H, Yan J, Luan D, Zhao Y, Bian X. Reusable and universal impedimetric sensing platform for the rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film. Analyst 2022; 147:4433-4441. [DOI: 10.1039/d2an01122k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacteria-imprinted polythiophene film (BIF)-based impedimetric sensor was proposed for the rapid and sensitive detection of S. aureus. A significant improvement is the reduced time for both BIF fabrication (15 min) and bacterial capturing (10 min).
Collapse
Affiliation(s)
- Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Kong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hai Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|