1
|
Sun Y, Wen T, Zhang P, Wang M, Xu Y. Recent Advances in the CRISPR/Cas-Based Nucleic Acid Biosensor for Food Analysis: A Review. Foods 2024; 13:3222. [PMID: 39456285 PMCID: PMC11507162 DOI: 10.3390/foods13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Food safety is a major public health issue of global concern. In recent years, the CRISPR/Cas system has shown promise in the field of molecular detection. The system has been coupled with various nucleic acid amplification methods and combined with different signal output systems to develop a new generation of CRISPR/Cas-based nucleic acid biosensor technology. This review describes the design concept of the CRISPR/Cas-based nucleic acid biosensor and its application in food analysis. A detailed overview of different CRISPR/Cas systems, signal amplification methods, and signal output strategies is provided. CRISPR/Cas-based nucleic acid biosensors have the advantages of high sensitivity, strong specificity, and timeliness, achieving fast analysis of a variety of targets, including bacteria, toxins, metal ions, pesticides, veterinary drugs, and adulteration, promoting the development of rapid food safety detection technology. At the end, we also provide our outlook for the future development of CRISPR/Cas-based nucleic acid biosensors.
Collapse
Affiliation(s)
| | | | | | | | - Yuancong Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.S.); (T.W.); (P.Z.); (M.W.)
| |
Collapse
|
2
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Lu Z, Wang S, Li P, Yang H, Han S, Zhang S, Ma L. An ultra-sensitive suboptimal protospacer adjacent motif enhanced rolling circle amplification assay based on CRISPR/Cas12a for detection of miR-183. Front Bioeng Biotechnol 2024; 12:1444908. [PMID: 39359259 PMCID: PMC11445046 DOI: 10.3389/fbioe.2024.1444908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction MicroRNAs (miRNAs) have been recognized as promising diagnostic biomarkers for Diabetic Retinopathy (DR) due to their notable upregulation in individuals with the condition. However, the development of highly sensitive miRNAs assays for the rapid diagnosis of DR in clinical settings remains a challenging task. Methods In this study, we introduce an enhanced CRISPR/Cas12a assay, leveraging suboptimal PAM (sPAM)-mediated Cas12a trans-cleavage in conjunction with rolling circle amplification (RCA). sPAM was found to perform better than canonical PAM (cPAM) in the detection of Cas12a-mediated ssDNA detection at low concentrations and was used instead of canonical PAM (cPAM) to mediate the detection. The parameters of reactions have also been optimized. Results and discussion In comparison with cPAM, sPAM has higher sensitivity in the detection of ssDNA at concentrations lower than 10 pM by Cas12a. By replacing cPAM with sPAM in the padlock template of RCA, ultra-high sensitivity for miR-183 detection is achieved, with a detection limit of 0.40 aM. within 25 min and a linear range spanning from 1 aM. to 1 pM. Our assay also exhibits exceptional specificity in detecting miR-183 from other miRNAs. Furthermore, the applicability of our assay for the sensitive detection of miR-183 in clinical serum samples is also validated. This study introduces a groundbreaking assay with excellent performance through a simple modification, which not only addresses existing diagnostic challenges, but also opens exciting new avenues for clinical diagnosis in the realm of DR.
Collapse
Affiliation(s)
- Zhiquan Lu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, University Town of Shenzhen, Shenzhen, China
| | - Shijing Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Ping Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lan Ma
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, University Town of Shenzhen, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
4
|
Wang F, Ma S, Zhang S, Ji Q, Hu C. CRISPR beyond: harnessing compact RNA-guided endonucleases for enhanced genome editing. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2566-8. [PMID: 39012436 DOI: 10.1007/s11427-023-2566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 07/17/2024]
Abstract
The CRISPR-Cas system, an adaptive immunity system in prokaryotes designed to combat phages and foreign nucleic acids, has evolved into a groundbreaking technology enabling gene knockout, large-scale gene insertion, base editing, and nucleic acid detection. Despite its transformative impact, the conventional CRISPR-Cas effectors face a significant hurdle-their size poses challenges in effective delivery into organisms and cells. Recognizing this limitation, the imperative arises for the development of compact and miniature gene editors to propel advancements in gene-editing-related therapies. Two strategies were accepted to develop compact genome editors: harnessing OMEGA (Obligate Mobile Element-guided Activity) systems, or engineering the existing CRISPR-Cas system. In this review, we focus on the advances in miniature genome editors based on both of these strategies. The objective is to unveil unprecedented opportunities in genome editing by embracing smaller, yet highly efficient genome editors, promising a future characterized by enhanced precision and adaptability in the genetic interventions.
Collapse
Affiliation(s)
- Feizuo Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shengsheng Ma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117597, Singapore.
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
5
|
Ren D, Wei H, Li N, Fu W, Huang Z, Yang L, Mu S. Colorimetric detection of circulating tumor cells in breast cancer based on ladder-branch hybridization chain reaction and DFs/AuNCs nanozyme. Talanta 2024; 274:125921. [PMID: 38552481 DOI: 10.1016/j.talanta.2024.125921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Breast cancer is the most common malignant tumor in women, which accounts for 6.9% of all cancer-related deaths. Early diagnosis is crucial for making the best clinical decision and improving the prognosis of patients. Circulating tumor cells (CTCs) have been regarded as significant tumor biomarkers. Herein, we designed a colorimetric biosensor for breast cancer CTCs quantification based on ladder-branch hybridization chain reaction (HCR) and DNA flowers/gold nanoclusters (DFs/AuNCs) nanozyme. With the assistance of complementary DNA labeled on magnetic beads (MBs), the cleavage products of RNA-cleaving DNAzymes (RCDs) could be rapidly captured, subsequently triggering ladder-branch HCR. In addition, the DFs/AuNCs nanozyme was applied for colorimetric analysis, which further improved the sensitivity for the detection of target CTCs. Benefiting from specific RCDs, ladder-branch HCR and DFs/AuNCs, we achieved a superior detection limit of 3 cells/mL as well as a broad linear range of 10 cells/mL to 104 cells/mL. Conclusively, this colorimetric biosensor achieved sensitively and selectively detection of breast cancer CTCs without the participation of enzymes at room temperature, which might provide new insight into the early detection of breast cancer.
Collapse
Affiliation(s)
- Dongxia Ren
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China
| | - Hua Wei
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China
| | - Na Li
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China
| | - Wenda Fu
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China
| | - Zhijun Huang
- Guilin University of Electronic Science and Technology, Guilin, 541004, China
| | - Longfei Yang
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China.
| | - Shijie Mu
- Department of Transfusion Medicine, Tangdu Hospital, Xi'an, 710032, China.
| |
Collapse
|
6
|
Zhang D, Tian B, Ling Y, Ye L, Xiao M, Yuan K, Zhang X, Zheng G, Li X, Zheng J, Liao Y, Shu B, Gu B. CRISPR/Cas12a-Powered Amplification-Free RNA Diagnostics by Integrating T7 Exonuclease-Assisted Target Recycling and Split G-Quadruplex Catalytic Signal Output. Anal Chem 2024; 96:10451-10458. [PMID: 38860917 DOI: 10.1021/acs.analchem.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Decai Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Meng Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinqiang Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Guansheng Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinying Li
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Judun Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Gu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| |
Collapse
|
7
|
Kong L, Zong C, Chen X, Xv H, Lv M, Li C. CRISPR/Cas12a trans-cleavage mediated photoelectrochemical biosensor based on zeolitic imidazolate framework-67 for ATP determination. Mikrochim Acta 2024; 191:403. [PMID: 38888689 DOI: 10.1007/s00604-024-06474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.
Collapse
Affiliation(s)
- Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Chengxue Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Huijuan Xv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Mengwei Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| |
Collapse
|
8
|
Shi X, Li H, Yao S, Ding Y, Lin X, Xu H, Liu Y, Zhao C, Zhang T, Wang J. A CRISPR/Cas12a-assisted bacteria quantification platform combined with magnetic covalent organic frameworks and hybridization chain reaction. Food Chem 2024; 440:138196. [PMID: 38104450 DOI: 10.1016/j.foodchem.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The total bacterial count is an important indicator of food contamination in food safety supervision and management. Recently, the CRISPR/Cas12a system integrated with nucleic acid amplification has increasingly shown tremendous potential in microorganism detection. However, a general quantification strategy for total bacteria count based on the CRISPR/Cas12a system has not yet been developed. Herein, we established a sensitive bacterial quantification strategy based on the CRISPR/Cas12a system combined with magnetic covalent organic frameworks (MCOFs) and hybridization chain reaction (HCR). MCOFs acted as a carrier, adsorbing the ssDNA as HCR trigger sequence through π-π stacking. Then, the HCR circuit produces DNA duplexes containing the PAM sequences that activate the trans-cleavage activity of Cas12a for further signal amplification. Under the optimal conditions, the proposed method can quantify total bacteria in 50 min with a minimum detection concentration of 10 CFU/mL. The successful applications in food samples confirmed the feasibility and broad application prospects.
Collapse
Affiliation(s)
- Xuening Shi
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| | - Hang Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yukun Ding
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Xiuzhu Lin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Hui Xu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yi Liu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| |
Collapse
|
9
|
Chen H, Feng Y, Liu F, Tan C, Xu N, Jiang Y, Tan Y. Universal smartphone-assisted label-free CRISPR/Cas12a-DNAzyme chemiluminescence biosensing platform for on-site detection of nucleic acid and non-nucleic acid targets. Biosens Bioelectron 2024; 247:115929. [PMID: 38128320 DOI: 10.1016/j.bios.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) system enables sensitive and specific detection of biomolecules, thanks to its programmability, high fidelity, and powerful signal amplification capabilities. Herein, a universal smartphone-assisted label-free G-quadruplex (G4) DNAzyme-based chemiluminescence CRISPR/Cas12a biosensing platform (G4CLCas) is firstly described that achieves on-site, ultrasensitive visual detection of nucleic acid and non-nucleic acid targets. The G4CLCas-based sensing platform relies on Cas12a trans-cleavage activation that triggers the cleavage of the G4 DNAzyme, resulting in chemiluminescence signals off/on compared to that of the control. Chemiluminescence signals are captured as images that are quantitatively analyzed and visualized using a smartphone-assisted imaging cartridge. Under optimal conditions, G4CLCas achieves a low limit of detection (LOD) of 8.6 aM (∼5.2 copies/μL) for monkeypox virus (MPXV) DNA within the linear concentration range of 10-300 aM and can accurately quantify viral DNA in spiked samples. G4CLCas can also detect non-nucleic acid targets, whereby it achieves a low LOD value of 84.3 nM for adenosine triphosphate (ATP) within the linear concentration range of 2-2000 μM. Here, a label-free, portable, on-site CRISPR/Cas12a chemiluminescence biosensing platform based on the G4 DNAzyme substrates is proposed with potential applications in clinical detection and bioanalytical chemistry research.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ying Feng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Yang R, Xie S, Zhou B, Guo M, Fan J, Su F, Ji Z, Chen Y, Li B. Postamplifying Cas12a Activation through Hybridization Chain Reaction-Triggered Fluorescent Nanocluster Formation for Ultrasensitive Nucleic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9890-9899. [PMID: 38353672 DOI: 10.1021/acsami.3c18732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
CRISPR/Cas12a-based biosensing is advancing rapidly; however, achieving sensitive and cost-effective reporting of Cas12a activation remains a challenge. In response, we have developed a label-free system capable of postamplifying Cas12a activation by integrating hybridization chain reaction (HCR) and DNA-copper nanoclusters (DNA-CuNCs). The trans-cleavage of Cas12a triggers a silenced HCR, leading to the in situ assembly of fluorescent DNA-CuNCs, allowing for the turn-on reporting of Cas12a activation. Without preamplification, this assay can detect DNA with a detection limit of 5 fM. Furthermore, when coupled with preamplification, the system achieves exceptional sensitivity, detecting the monkeypox virus (MPXV) plasmid at 1 copy in human serum. In a MPXV pseudovirus-based validation test, the obtained results are in agreement with those obtained by qPCR, reinforcing the robustness of this method. Our study represents the first effort to manipulate DNA-CuNC formation on HCR for highly sensitive and cost-effective reporting of Cas12a, resulting in an efficient synthetic biology-enabled sensing platform for biosafety applications.
Collapse
Affiliation(s)
- Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Mingming Guo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Fengli Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Duan M, Zhao Y, Liu Y, He Y, Dai R, Chen J, Li X, Jia F. A low-background and wash-free signal amplification F-CRISPR biosensor for sensitive quantitative and visible qualitative detection of Salmonella Typhimurium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168905. [PMID: 38016549 DOI: 10.1016/j.scitotenv.2023.168905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
In traditional CRISPR-based biosensors, the cleavage-induced signal generation is insufficient because only a signals is generated at a CRISPR-induced cleavage. Herein, we developed an improved CRISPR/Cas12a-based biosensor with an enlarged signal generation which integrated the hybridization chain reaction (HCR) and low-background Förster Resonance Energy Transfer (FRET) signal output mode. The HCR with nucleic acid self-assembly capability was used as a signal carrier to load more signaling molecules. To get the best signal amplification, three different fluorescence signal output modes (fluorescence recovery, FRET and low-background FRET) generated by two fluoresceins, FAM and Cy5, were fully investigated and compared. The results indicated that the low-background FRET signal output mode with the strictest signal generation conditions yielded the highest signal-to-noise ratio (S/N) (19.17) and the most obvious fluorescence color change (from red to yellow). In optimal conditions, the proposed biosensor was successfully applied for Salmonella Typhimurium (S. Typhimurium) detection with 6 h (including 4 h for sample pre-treatment) from the initial target processing to the final detection result. The qualitative sensitivity, reliant on color changes, was 103 CFU/mL. The quantitative sensitivity, calculated by the fluorescence value, were 1.62 × 101 CFU/mL, 3.72 × 102 CFU/mL, and 8.71 × 102 CFU/mL in buffer solution, S. Typhimurium-spiked milk samples, and S.Typhimurium-spiked chicken samples, respectively. The excellent detection performance of the proposed biosensor endowed its great application potential in food and environment safety monitoring.
Collapse
Affiliation(s)
- Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
12
|
Zeng D, Jiao J, Mo T. Combination of nucleic acid amplification and CRISPR/Cas technology in pathogen detection. Front Microbiol 2024; 15:1355234. [PMID: 38380103 PMCID: PMC10877009 DOI: 10.3389/fmicb.2024.1355234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Major health events caused by pathogenic microorganisms are increasing, seriously jeopardizing human lives. Currently PCR and ITA are widely used for rapid testing in food, medicine, industry and agriculture. However, due to the non-specificity of the amplification process, researchers have proposed the combination of nucleic acid amplification technology with the novel technology CRISPR for detection, which improves the specificity and credibility of results. This paper summarizes the research progress of nucleic acid amplification technology in conjunction with CRISPR/Cas technology for the detection of pathogens, which provides a reference and theoretical basis for the subsequent application of nucleic acid amplification technology in the field of pathogen detection.
Collapse
Affiliation(s)
| | | | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Chen J, Yu S, Qian Z, He K, Li B, Cao Y, Tang K, Yu S, Wu YX. Target-triggered enzyme-free amplification for highly efficient AND-gated bioimaging in living cells. Analyst 2023; 148:5963-5971. [PMID: 37867382 DOI: 10.1039/d3an01157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shengrong Yu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Bingqian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Keqi Tang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Shengjia Yu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong-Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
14
|
He Y, Hu Q, San S, Kasputis T, Splinter MGD, Yin K, Chen J. CRISPR-based Biosensors for Human Health: A Novel Strategy to Detect Emerging Infectious Diseases. Trends Analyt Chem 2023; 168:117342. [PMID: 37840598 PMCID: PMC10571337 DOI: 10.1016/j.trac.2023.117342] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Infectious diseases (such as sepsis, influenza, and malaria), caused by various pathogenic bacteria and viruses, are widespread across the world. Early and rapid detection of disease-related pathogens is necessary to reduce their spread in the world and prevent their potential global pandemics. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, as the next-generation molecular diagnosis technique, holds immense promise in the detection of infectious diseases because of its remarkable advantages, including supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have been developed for application in environmental monitoring, food safety, and point-of-care diagnosis, there remains a critical need to summarize and explore their potential in human health. This review aims to address this gap by focusing on the latest advancements in CRISPR-based biosensors for infectious disease detection. We provide an overview of the current status, pre-amplification methods, the unique feature of each CRISPR system, and the design of CRISPR-based biosensing strategies to detect disease-associated nucleic acids. Last but not least, the review analyzes the current challenges and provides future perspectives, which will contribute to developing more effective CRISPR-based biosensors for human health.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Samantha San
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Jiang T, Dai L, Lou Y, Wang H, Gao Z, Wu D, Ma H, Wei Q. Hierarchically Structured and Highly Dispersible MOF Nanozymes Combining Self-Assembly and Biomineralization for Sensitive and Persistent Chemiluminescence Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42404-42412. [PMID: 37642196 DOI: 10.1021/acsami.3c10776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal-organic frameworks (MOF) are promising candidates for the construction of artificial nanozymes and have found applications in many fields. However, the preparation of nanosized MOF materials with high performance and good dispersibility is still a big challenge and is in great demand as signal labels for immunoassays. In this work, hierarchically structured and highly dispersible MOF nanoparticles were facilely prepared in a one-pot method. Self-assembled micelles from PEGylated hematin were used as structured templates to mediate the formation of zeolitic imidazole framework-8 (ZIF-8) nanoparticles in aqueous solution. The encapsulation of micelles in ZIF-8 frameworks produces well-dispersed nanoparticles and generates dual-confinement effects for catalytic hematin. Owing to the hierarchical structures, the formed MOF nanozymes show enhanced peroxidase-like activity and enable persistent chemiluminescence behaviors for the luminol system. Sandwich-type chemiluminescence immunoassays for carcinoembryonic antigen (CEA) were proposed using MOF nanozymes as signal labels, and good analytical performances were achieved. The combination of self-assembly and biomineralization may open new avenues for the development of MOF nanomaterials.
Collapse
Affiliation(s)
- Tong Jiang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanan Lou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhongfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Ke X, Hu Y, Chen C, Hu T. A one-tube dual-readout biosensor for detection of nucleic acids and non-nucleic acids using CRISPR-ALP tandem assay. Analyst 2023; 148:4356-4364. [PMID: 37555739 DOI: 10.1039/d3an00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have been considered a next-generation molecular diagnosis tool. Single-readout mode has been extensively employed in massive CRISPR/Cas12a-based biosensors. In this work, we propose a one-tube dual-readout biosensor (CRISAT) for the first time for the detection of ultrasensitive nucleic acids and non-nucleic acids developed by harnessing CRISPR-ALP tandem assay. In the presence of a target, Cas12a is activated to randomly cut the single-stranded hyDNA sequence of MB@hyDNA-cALP, thus releasing abundant alkaline phosphatase (ALP) in the supernatant solution. By using 4-aminophenol phosphate as the substrate of ALP, p-aminophenol is produced, which then reacts with N-[3-(trimethoxysilyl)propyl]ethylenediamine or diethylenetriamine to generate silicon-containing polymer carbon dots (Si PCDs) or polymer carbon dots (PCDs) in situ, which can be observed by the naked eye or detected using a fluorescent device in the same solution. Using this strategy, a fluorescence and colorimetry dual-readout nanoplatform for CRISPR-based biosensors can be rationally developed. We ascertain the applicability of CRISAT by detecting the SARS-CoV-2 pseudovirus, achieving superior sensitivity and specificity. With simple modification of crRNAs, the CRISAT platform can also be employed to detect monkeypox virus (MPXV) and non-nucleic acids of adenosine triphosphate (ATP). This work shows great potential for the detection of nucleic acids and non-nucleic acids.
Collapse
Affiliation(s)
- Xinxin Ke
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Yi Hu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| | - Tao Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
17
|
Li M, Luo N, Liao X, Zou L. Proximity hybridization-regulated CRISPR/Cas12a-based dual signal amplification strategy for sensitive detection of circulating tumor DNA. Talanta 2023; 257:124395. [PMID: 36858011 DOI: 10.1016/j.talanta.2023.124395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Circulating tumor DNA (ctDNA) is regarded as an ideal candidate biomarker for the non-invasive diagnosis of cancer. However, the lack of convenient and reliable detection methods for ctDNA restricts its clinical application. Herein, we developed a dual signal amplification strategy for sensitive detection of ctDNA based on hybridization chain reaction (HCR) and proximity hybridization-regulated CRISPR/Cas12a. The ctDNA initiates HCR through the continuous hybridization of two hairpin probes (H1 and H2), yielding long nicked double-stranded DNA nanowires composed of numerous split segments, which are successively connected to activate the trans-cleavage activity of CRISPR/Cas12a. In this case, the doubly labeled single-stranded DNA reporter can be cleaved to produce a strong fluorescent signal. Owing to the dual amplification of HCR and CRISPR/Cas12a, this strategy exhibits high sensitivity toward ctDNA with a low detection limit of 5.43 fM. Moreover, the proposed method was successfully applied for ctDNA detection in serum samples with satisfactory results, which has great potential in the clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Nian Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, PR China.
| |
Collapse
|
18
|
Zhou C, Li W, Zhao Y, Gu K, Liao Z, Guo B, Huang Z, Yang M, Wei H, Ma P, Li C, Li H, Tang Y, Lei C, Wang H. Sensitive detection of viable salmonella bacteria based on tertiary cascade signal amplification via splintR ligase ligation-PCR amplification-CRISPR/Cas12a cleavage. Anal Chim Acta 2023; 1248:340885. [PMID: 36813454 DOI: 10.1016/j.aca.2023.340885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Several viable Salmonella bacteria are capable of causing severe human diseases and huge economic losses. In this regard, viable Salmonella bacteria detection techniques that can identify small numbers of microbial cells are highly valuable. Here, we present a detection method (referred to as SPC) based on the amplification of tertiary signals using splintR ligase ligation, PCR amplification and CRISPR/Cas12a cleavage. The detection limit of the SPC assay was 6 copies (HilA RNA) and 10 CFU (cell). Based on Intracellular HilA RNA detection, this assay can be used to distinguish between viable and dead Salmonella. In addition, it is able to detect multiple serotypes of Salmonella and has been successfully used to detect Salmonella in milk or isolated from farms. Overall, this assay is a promising test for viable pathogens detection and biosafety control.
Collapse
Affiliation(s)
- Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenjing Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ziwei Liao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zheren Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hongcheng Wei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Zhao Y, Wu W, Tang X, Zhang Q, Mao J, Yu L, Li P, Zhang Z. A universal CRISPR/Cas12a-powered intelligent point-of-care testing platform for multiple small molecules in the healthcare, environment, and food. Biosens Bioelectron 2023; 225:115102. [PMID: 36724657 DOI: 10.1016/j.bios.2023.115102] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Growing studies focusing on nuclear acid detection via the emerging CRISPR technique demonstrate its promising application. However, limited works solve the identification of non-nucleic acid targets, especially multiple small molecules. To address challenges for point-of-care testing (POCT) in complex matrices for healthcare, environment, and food safety, we developed CRISPR Cas12a-powered highly sensitive, high throughput, intelligent POCT (iPOCT) for multiple small molecules based on a smartphone-controlled reader. As a proof of concept, aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), and capsaicin (CAP) were chosen as multiple targets. First, three antigens were preloaded in independent microwells. Then, the antibody/antigen-induced fluorescent signals were consecutively transferred from the biotin-streptavidin to CRISPR/Cas12a system. Third, the fluorescent signals were recorded by a smartphone-controlled handheld dark-box readout. Under optimization, detection limits in AFB1, BaP, and CAP were 0.00257, 4.971, and 794.6 fg/mL with wide linear ranges up to four orders of magnitude. Using urine, water, soybean oil, wheat, and peanuts as the complex matrix, we recorded high selectivity, considerable recovery, repeatability, and high consistency comparison to HPLC-MS/MS methods. This work promises a practical intelligent POCT platform for multiple targets in lipid-soluble and water-soluble matrices and could be extensively applied for healthcare, environment, and food safety.
Collapse
Affiliation(s)
- Yuan Zhao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China
| | - Xiaoqian Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China
| | - Qi Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, PR China
| | - Jin Mao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, PR China
| | - Li Yu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, PR China; Zhejiang Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430062, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, PR China.
| |
Collapse
|
20
|
Mueller BL, Liberman MJ, Kolpashchikov DM. OWL2: a molecular beacon-based nanostructure for highly selective detection of single-nucleotide variations in folded nucleic acids. NANOSCALE 2023; 15:5735-5742. [PMID: 36880268 DOI: 10.1039/d2nr05590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybridization probes have been used in the detection of specific nucleic acids for the last 50 years. Despite the extensive efforts and the great significance, the challenges of the commonly used probes include (1) low selectivity in detecting single nucleotide variations (SNV) at low (e.g. room or 37 °C) temperatures; (2) low affinity in binding folded nucleic acids, and (3) the cost of fluorescent probes. Here we introduce a multicomponent hybridization probe, called OWL2 sensor, which addresses all three issues. The OWL2 sensor uses two analyte binding arms to tightly bind and unwind folded analytes, and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form fluorescent 'OWL' structure. The OWL2 sensor was able to differentiate single base mismatches in folded analytes in the temperature range of 5-38 °C. The design is cost-efficient since the same UMB probe can be used for detecting any analyte sequence.
Collapse
Affiliation(s)
- Brittany L Mueller
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | - Mark J Liberman
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
21
|
Zhou Y, Xie S, Liu B, Wang C, Huang Y, Zhang X, Zhang S. Chemiluminescence Sensor for miRNA-21 Detection Based on CRISPR-Cas12a and Cation Exchange Reaction. Anal Chem 2023; 95:3332-3339. [PMID: 36716431 DOI: 10.1021/acs.analchem.2c04484] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeated sequences, which acted as triggers to initiate the transcleavage activity of CRISPR-Cas12a. The activated Cas12a could cleave the biotinylated linker DNA of CuS nanoparticles (NPs) to inhibit the binding of CuS NPs to streptavidin immobilized on the surface of the microplate, which strongly reduced the generation of Cu2+ from a cation exchange between CuS NPs and AgNO3, and thus efficiently suppressed the CL of Cu2+-luminol-H2O2 system, giving a "signal off" biosensor. With the multiple amplification, the detection limit of the developed sensor for miRNA-21 reached 16 aM. In addition, this biosensor is not only suitable for a professional chemiluminescence instrument but also for a smartphone used as a detection tool for the purpose of portable and low-cost assay. This method could be used to specifically detect quite a low level of miRNA-21 in human serum samples and various cancer cells, indicating its potential in ultrasensitive molecular diagnostics.
Collapse
Affiliation(s)
- Yanmei Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao266071, China
| | - Shupu Xie
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Bo Liu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Cong Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Yibo Huang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xiaoru Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, and College of Chemistry and Chemical Engineering, Linyi University, Linyi276000, China
| |
Collapse
|
22
|
Kumar M, Maiti S, Chakraborty D. Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosens Bioelectron 2022; 217:114712. [PMID: 36155952 DOI: 10.1016/j.bios.2022.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
CRISPR/Cas systems have the ability to precisely target nucleotide sequences and enable their rapid identification and modification. While nucleotide modification has enabled the therapeutic correction of diseases, the process of identifying the target DNA or RNA has greatly expanded the field of molecular diagnostics in recent times. CRISPR-based DNA/RNA detection through programmable nucleic acid binding or cleavage has been demonstrated for a large number of pathogenic and non-pathogenic targets. Combining CRISPR detection with nucleic acid amplification and a terminal signal readout step allowed the development of numerous rapid and robust nucleic acid platforms. Wherever the Cas effector can faithfully distinguish nucleobase variants in the target, the platform can also be extended for sequencing-free rapid variant detection. Some initial PAM disruption-based SNV detection reports were limited to finding or integrating mutated/mismatched nucleotides within the PAM sequences. In this review, we try to summarize the developments made in CRISPR diagnostics (CRISPRDx) to date emphasizing CRISPR-based SNV detection. We also discuss the applications where such diagnostic modalities can be put to use, covering various fields of clinical research, SNV screens, disease genotyping, primary surveillance during microbial infections, agriculture, food safety, and industrial biotechnology. The ease of rapid design and implementation of such multiplexable assays can potentially expand the applications of CRISPRDx in the domain of affinity-based target sequencing, with immense possibilities for low-cost, quick, and widespread usage. In the end, in combination with proximity assays and a suicidal gene approach, CRISPR-based in vivo SNV detection and cancer cell targeting can be formulated as personalized gene therapy.
Collapse
Affiliation(s)
- Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|