1
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2025; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
2
|
Bakhtiari A, Kähler CJ. A method to prevent clogging and clustering in microfluidic systems using microbubble streaming. BIOMICROFLUIDICS 2024; 18:044101. [PMID: 38984267 PMCID: PMC11232117 DOI: 10.1063/5.0214436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method's effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.
Collapse
Affiliation(s)
- Amirabas Bakhtiari
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| | - Christian J. Kähler
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| |
Collapse
|
3
|
Yao W, He H, Wang F. CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. SENSORS (BASEL, SWITZERLAND) 2024; 24:1603. [PMID: 38475139 DOI: 10.3390/s24051603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024]
Abstract
Micropillar array electrodes represent a promising avenue for enhancing detection sensitivity and response current. However, existing methods for depositing electrode materials on micropillar arrays often result in uneven distribution, with the thin sidewall layer being less conductive and prone to corrosion. In addressing this issue, this study introduces electroplating to enhance the copper layer on the sidewall of micropillar array electrodes. These electrodes, fabricated through standard microelectronics processes and electroplating, are proposed for non-enzymatic glucose detection, with the copper layer deposited via electroplating significantly enhancing sensitivity. Initially, the impact of cetyltrimethylammonium bromide (CTAB) concentration as an inhibitor on the surface morphology and sensitivity of the plated layer was investigated. It was discovered that CTAB could decrease surface roughness, hinder the development of large and coarse grains, generate small particles, and boost sensitivity. Compared to the uncoated electrode and plating without CTAB, sensitivity was elevated by a factor of 1.66 and 1.62, respectively. Subsequently, the alterations in plating morphology and detection performance within a range of 0.3 ASD to 3 ASD were examined. Sensitivity demonstrated a tendency to increase initially and then decrease. The electrode plated at 0.75 ASD achieved a maximum sensitivity of 3314 μA·mM-1·cm-2 and a detection limit of 15.9 μM. Furthermore, a potential mechanism explaining the impact of different morphology on detection performance due to CTAB and current density was discussed. It was believed that the presented effective strategy to enhance the sensitivity of micropillar array electrodes for glucose detection would promote the related biomedical detection applications.
Collapse
Affiliation(s)
- Wenhao Yao
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Hu He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Fuliang Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Liu B, Jin J, Ran B, Chen C, Li J, Qin N, Zhu Y. Continuous production of bimetallic nanoparticles on carbon nanotubes based on 3D-printed microfluidics. NANOSCALE 2024; 16:2565-2573. [PMID: 38224263 DOI: 10.1039/d3nr05090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nanoparticle-functionalized carbon nanotubes are promising in many research fields, especially in sensing, due to their intriguing performance in catalysis. However, these nanomaterials are mainly produced through batch processes under harsh conditions, thus encountering inherent limitations of low throughput and uncontrollable morphology of functional nanoparticles (NPs). In this work, we propose a method for high-yield and continuous production of bimetallic (Pt-Pd) NPs on multi-walled carbon nanotubes (MWCNTs) at room temperature through a custom 3D-printed microfluidic platform. A homogenous particle nucleation and growth environment could be created on the microfluidic platform that was equipped with two 3D-printed micromixers. Pt-Pd NPs loaded on MWCNTs were prepared in the microfluidic platform with high throughput and controlled size, dispersity and composition. The synthetic parameters for these nanocomposites were investigated to optimize their electrocatalytic performance. The optimized nanocomposites exhibited excellent electrocatalytic activity with exceptional sensitivity and wide detection range, superior to their counterparts prepared via conventional approaches. This method proposed here could be further adapted for manufacturing other catalyst support materials, opening more avenues for future large-scale production and catalytic investigation of functional nanomaterials.
Collapse
Affiliation(s)
- Bo Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Bin Ran
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Chaozhan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jiaqian Li
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Ning Qin
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhu X, He M, Zhang J, Jiang Y. Synergistic catalysis and detection of hydrogen peroxide based on a 3D-dimensional molybdenum disulfide interspersed carbon nanotubes nanonetwork immobilized chloroperoxidase biosensor. Bioelectrochemistry 2023; 154:108507. [PMID: 37451043 DOI: 10.1016/j.bioelechem.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Enzyme-based electrochemical biosensors are promising for a wide range of applications due to their unique specificity and high sensitivity. In this work, we present a novel enzyme bioelectrode for the sensing of hydrogen peroxide (H2O2). The molybdenum disulfide nanoflowers (MoS2) is self-assembled on carboxylated carbon nanotubes (CNT) to form a three-dimensional conductive network (3D-CNT@MoS2), which is modified with 1-ethyl-3-methylimidazolium bromide (ILEMB), and followed by anchoring chloroperoxidase (CPO) onto the nanocomposite (3D-CNT@MoS2/ILEMB) through covalent binding to form a bioconjugate (3D-CNT@MoS2/ILEMB/CPO). The ILEMB modified 3D-CNT@MoS2/ILEMB has good hydrophilicity and conductivity, which not only provides a suitable microenvironment for the immobilization of CPO but also facilitates the direct electron transfer (DET) of CPO at the electrode. The 3D-CNT@MoS2/ILEMB/CPO bioconjugate modified electrode has a high catalytic efficiency for H2O2. Through electroenzymatic synergistic catalysis for H2O2 detection by 3D-CNT@MoS2/ILEMB/CPO-GCE, a wide detection range of 0.2 μmol·L-1 to 997 μmol·L-1 and a low detection limit of 0.097 μmol・L-1 with high sensitivity of 1050 µA·mmol·L-1·cm-2 were achieved. Additionally, the 3D-CNT@MoS2/ILEMB/CPO-GCE displayed exceptional stability, selectivity, and reproducibility. Furthermore, 3D-CNT@MoS2/ILEMB/CPO-GCE is suitable for sensing of H2O2 in human urine s with good recovery, suggesting its potential application for the detection of H2O2 in biomedical field.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Meng He
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Jing Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
6
|
Zhu F, Liu Z, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y. Enhanced on-Chip modification and intracellular hydrogen peroxide detection via gigahertz acoustic streaming microfluidic platform. ULTRASONICS SONOCHEMISTRY 2023; 100:106618. [PMID: 37769590 PMCID: PMC10543187 DOI: 10.1016/j.ultsonch.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible and controlled fluid surrounding the electrochemical chip was optimized theoretically and applied in the sonoelectrochemical deposition of Au nanoparticles (AuNPs) first. Under the steady and fast flow stimulus of AS, AuNPs could be synthesized with a smaller and evener size distribution than the normal condition, allowing AuNPs to show an excellent peroxidase-like activity. Moreover, the AS also accelerated the mass transport of target molecules and improved the catalytic rate, leading to the enhancement of H2O2 detection, with an extremely low detection limit of 32 nM and a high sensitivity of 4.34 μA/ (mM·mm2). Finally, this system was successfully applied in tracking H2O2 release from different cell lines to distinguish the cancer cells from normal cells. This study innovatively integrated the surface modification and molecules detection process on a chip, and also proposed a simple but sensitive platform for microfluidic biosensing application.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zeyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Chen C, Ran B, Liu B, Liu X, Zhang Z, Li Y, Li H, Lan M, Zhu Y. Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes. Anal Chim Acta 2023; 1272:341450. [PMID: 37355325 DOI: 10.1016/j.aca.2023.341450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Quantifying multiple biomarkers with high sensitivity in tiny biological samples is essential to meet the growing demand for point-of-care testing. This paper reports the development of a novel microfluidic device integrated with mass-producible micropillar array electrodes (μAEs) for multiple biomarker detections. The μAE are mass-fabricated by soft lithography and hot embossing technique. Pt-Pd bimetallic nanoclusters (BNC) are modified on the surface of μAEs by constant potential (CP)/multi-potential step (MPS) electrodeposition strategies to improve the electroanalytical performance. The experimental result displays that Pt-Pd BNC/μAEs have good sensitivity enhancement compared with bare planar electrodes and bare μAEs, the enhancement being 56.5 and 9.5 times respectively, from the results of the H2O2 detection. Furthermore, glucose, uric acid and sarcosine were used as model biomarkers to show the biosensing capability with high sensitivity. The linear range and LOD of the glucose, uric acid and sarcosine detection are 0.1 mM-12 mM, 10 μM-800 μM and 2.5 μM-100 μM, 58.5, 3.4 and 0.4 μM, respectively. In particular, biosensing chips show wide linear ranges covering required detection ranges of glucose, uric acid and sarcosine in human serum, indicating the developed device has great potential in self-health management and clinical requirements.
Collapse
Affiliation(s)
- Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Xiaoxuan Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Ziteng Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Yan Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Hongchun Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
8
|
Chen C, Ran B, Liu B, Liu X, Jin J, Zhu Y. Numerical Study on a Bio-Inspired Micropillar Array Electrode in a Microfluidic Device. BIOSENSORS 2022; 12:878. [PMID: 36291015 PMCID: PMC9599680 DOI: 10.3390/bios12100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The micropillar array electrode (µAE) has been widely applied in microchip-based electrochemical detection systems due to a large current response. However, it was found that amplifying the current through further adjusting geometrical parameters is generally hindered by the shielding effect. To solve this problem, a bio-inspired micropillar array electrode (bµAE) based on the microfluidic device has been proposed in this study. The inspiration is drawn from the structure of leatherback sea turtles' mouths. By deforming a μAE to rearrange the micropillars on bilateral sides of the microchannel, the contact area between micropillars and analytes increases, and thus the current is substantially improved. A numerical simulation was then used to characterize the electrochemical performance of bµAEs. The effects of geometrical and hydrodynamic parameters on the current of bµAEs were investigated. Moreover, a prototypical microchip integrated with bµAE was fabricated for detailed electrochemical measurement. The chronoamperometry measurements were conducted to verify the theoretical performance of bµAEs, and the results suggest that the experimental data are in good agreement with those of the simulation model. This work presents a novel bµAE with great potential for highly sensitive electrochemical detection and provides a new perspective on the efficient configuration of the µAE.
Collapse
Affiliation(s)
- Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xiaoxuan Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|