1
|
Wang X, Jiang D, Dong M, Chen Y, Wang W, Sun Z, Li H, Shiigi H, Chen Z. Dual-Mechanism Quenching Electrochemiluminescence System by Coupling Energy Transfer with Electron Transfer for Sensitive Competitive Aptamer-Based Detection of Furanyl Fentanyl in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22360-22368. [PMID: 39344894 DOI: 10.1021/acs.jafc.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resonance energy transfer (RET) quenching is significantly important for developing electrochemiluminescence (ECL) sensors, but RET platforms face challenges like interference from other fluorescent substances and reliance on energy transfer efficiency. This study used Zn-PTC, formed by zinc ions coordinated with perylene-3,4,9,10-tetracarboxylate, as a dual-mechanism quencher to reduce the ECL intensity of carbon nitride nanosheets (Tg-CNNSs). Co3O4/NiCo2O4 acts as a coreaction promoter, enhancing and stabilizing the luminescence of Tg-CNNSs. Zn-PTC absorbs energy from Tg-CNNSs, altering the fluorescence lifetime to confirm energy transfer, while energy-level matching demonstrates electron transfer. By leveraging both RET and electron transfer mechanisms, the designed ECL aptasensor significantly reduces signal fluctuations that may arise from a single mechanism, resulting in more stable and reliable detection outcomes. The ECL aptasensor designed for furanyl fentanyl (FUF) detection shows excellent performance with a detection limit of 5.7 × 10-15 g/L, offering new pathways for detecting FUF and other small molecules.
Collapse
Affiliation(s)
- Xiaolan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Meihua Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zheng Sun
- Institute of Forensic Science, Changzhou Municipal Security Bureau, Changzhou 13 213164, China
| | - Haibo Li
- Institute of Forensic Science, Changzhou Municipal Security Bureau, Changzhou 13 213164, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Wen Y, Yang J, Yang G, Yuan R, Hu S, Chen S. Porous Complex-Mediated Dual Emission of Porphyrins for the Electrochemiluminescence Bioassay. Anal Chem 2024; 96:1427-1435. [PMID: 38226591 DOI: 10.1021/acs.analchem.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.
Collapse
Affiliation(s)
- Yu Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shanshan Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Wang B, Zhao L, Ma H, Ren X, Wang H, Fan D, Wu D, Wei Q. One master and two servants: One Zr(Ⅳ) with two ligands of TCPP and NH 2-BDC form the MOF as the electrochemiluminescence emitter for the biosensing application. Talanta 2024; 266:124961. [PMID: 37480821 DOI: 10.1016/j.talanta.2023.124961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Here we put forward an innovative "one master and two servants" strategy for enhancing the ECL performance. A novel ECL luminophore named Zr-TCPP/NH2-BDC (TCPP@UiO-66-NH2) was synthesized by self-assembly of meso-tetra(4-carboxyphenyl)porphine (TCPP) and 4-aminobenzoic acid (NH2-BDC) with Zr clusters. TCPP@UiO-66-NH2 has a porous structure and a highly ordered structure, which allows the molecular motion of TCPP to be effectively confined, thereby inhibiting nonradiative energy transfer. Importantly, TCPP@UiO-66-NH2 has a higher and more stable ECL signal. To further improve the sensitivity of the sensor, we use polydopamine-coated manganese dioxide (PDA@MnO2), which has a double quenching effect, as the quencher. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-N) is one of the ideal markers for the early diagnosis of COVID-19, and its sensitivity detection is of great significance for the prevention and treatment of COVID-19. Thus, we constructed a quenching-type ECL sensor for the ultrasensitive detection of the SARS-CoV-2-N. Its linear range is 10 fg/mL∼1 μg/mL and the calculated detection limit is 1.4 fg/mL (S/N = 3). The spiked recoveries are 97.40-103.8%, with the relative standard deviations (RSD) under 3.0%. More importantly, the technique offers a viable way to identify and diagnose viral infections early.
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
4
|
An X, Jiang D, Ni Y, Wang W, Zhu Q, Xu F, Shiigi H, Chen Z. Synergistic Multieffect Catalytic Amplified Cathodic Electrochemiluminescence Biosensor via Target Binding-Induced Aptamer Conformational Changes for the Ultrasensitive Detection of Synthetic Cathinone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55369-55378. [PMID: 37987692 DOI: 10.1021/acsami.3c12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Signal amplification is a powerful approach to increasing the detection sensitivity of electrochemiluminescence (ECL). Here, we developed synergistic multieffect catalytic strategies based on CuCo2O4 nanorod combination of Ag NPs as coreaction accelerators to fabricate an efficient covalent organic framework (PTCA-COF)-based ternary ECL biosensor. Concretely, the high redox reversibility of Co3+/Co2+ and Cu2+/Cu+ would constantly promote the decomposition of S2O82- for ECL emission. Meanwhile, the introduction of Ag NPs with excellent electrocatalytic activity further realized multiple amplification of the ECL signal. Furthermore, the good hydrogen evolution reaction (HER) ability of Ag@CuCo2O4 nanorods could accelerate the proton transmission rate of the system to amplify ECL behavior. In the presence of the target synthetic cathinone 4-chloroethcathinone (4-CEC) as the quenching ECL signal-response probe, the Ferrocene (Fc)-labeled aptamer folded into the conformationally limited stem-loop structure, bringing Fc near the ECL luminophore and resulting in quenched ECL emission. The quenching effect was connected with target-induced aptamer conformational changes and consequently reflected the target concentration. Under optimum conditions, the proposed biosensor realized a highly sensitive assay for 4-CEC with a large dynamic range from 1.0 × 10-12 to 1.0 × 10-6 g/L and a detection limit as low as 2.5 × 10-13 g/L. This study integrated multiple amplification strategies for efficient ECL enhancement, which provided a novel approach to constructing highly bioactive and sensitive sensors.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yuan Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qiaoyong Zhu
- Changzhou fine test technology Co., Ltd., Changzhou 213000, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi 214431, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
An X, Jiang D, Cao Q, Wang W, Xu F, Shiigi H, Chen Z. Ultrasensitive electrochemiluminescence sensor for the detection of synthetic cannabinoids based on perovskite as coreaction accelerator and light-scattering effects of photonic crystals. Anal Chim Acta 2023; 1279:341852. [PMID: 37827658 DOI: 10.1016/j.aca.2023.341852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
As is common knowledge, a strong electrochemiluminescence (ECL) signal is required to ensure the high sensitivity of trace target detection. Here, a dual signal amplification strategy by integrating of perovskite and photonic crystal was fabricated for quantitative synthetic cannabinoids (AB-PINACA) detection based on Zr-connected PTCA and TCPP (PTCA-TCPP) with excellent ECL performance as luminophores. On the one hand, the co-reaction accelerator perovskite (LaCoO3) improved the effective electroactive area of the electrode and promoted the decomposition of K2S2O8, resulting in a stronger ECL signal value. On the other hand, polystyrene inverse opal (PIOPCs) formed after the swelling of PS microspheres not only taken advantage of the light scattering effect and excellent catalytic property of photonic crystals to amplify the ECL signal, but also could be used as a binder to fix LaCoO3 and PTCA-TCPP on the electrode surface to generate unprecedented ECL response and stable ECL signals. Subsequently, the detection substance AB-PINACA was loaded on the electrode surface via the amide bond with the luminophores PTCA-TCPP, thus quenching the ECL signal, so as to realize the sensitive detection of synthetic cannabinoids. Under the optimal conditions, the proposed sensor achieved highly sensitive AB-PINACA detection with a dynamic range from 1.0 × 10-12 to 1.0 × 10-3 g/L and the detection limit was 1.1 × 10-13 g/L, which had great application potential in the detection of synthetic cannabinoids.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi, 214431, China
| | - Hiroshi Shiigi
- Osaka Metropolitan University, Department of Applied Chemistry, Naka Ku, 1-1 Gakuen, Naka, Sakai, Osaka, 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
6
|
Dragan AM, Feier BG, Tertiș M, Bodoki E, Truta F, Ștefan MG, Kiss B, Van Durme F, De Wael K, Oprean R, Cristea C. Forensic Analysis of Synthetic Cathinones on Nanomaterials-Based Platforms: Chemometric-Assisted Voltametric and UPLC-MS/MS Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2393. [PMID: 37686901 PMCID: PMC10489959 DOI: 10.3390/nano13172393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as "legal highs" or "bath salts", being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).
Collapse
Affiliation(s)
- Ana-Maria Dragan
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - Bogdan George Feier
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Florina Truta
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120 Brussels, Belgium
| | - Karolien De Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
7
|
An X, Jiang D, Cao Q, Xu F, Shiigi H, Wang W, Chen Z. Highly Efficient Dual-Color Luminophores for Sensitive and Selective Detection of Diclazepam Based on MOF/COF Bi-Mesoporous Composites. ACS Sens 2023. [PMID: 37363936 DOI: 10.1021/acssensors.3c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Currently, studies on electrochemiluminescence (ECL) mainly focused on the single emission of luminophores while those on multi-color ECL were rarely reported. Here, a bi-mesoporous composite of the metal-organic framework (MOF)/covalent-organic framework (COF) with strong and stable dual-color ECL was prepared to construct a novel ECL sensor for sensitive detecting targets. A PTCA-COF with excellent ECL performance was loaded with a great amount of another ECL emitter Cu3(HHTP)2. Remarkably, the integrated composite had both ECL properties of PTCA-COF at 520 nm and Cu3(HHTP)2 at 600 nm wavelengths. Furthermore, Cu3(HHTP)2 with good electron transfer ability can greatly enhance the electrical conductivity and promote electrochemical activation. Thus, the simultaneous enhanced two-color ECL intensity and the catalytic properties of the conductive MOF exerted a dual enhancement effect on the ECL signal of the composite. Significantly, diclazepam can not only be adsorbed well on the multi-stage porous structure MOF/COF composite by π-π interactions but also selectively quench the ECL signal of the PTCA-COF, realizing the sensitive detection. The ECL sensor showed a wide detection range from 1.0 × 10-13 to 1.0 × 10-8 g/L, and the limit of detection (LOD) was as low as 2.6 × 10-14 g/L (S/N = 3). The proposed ECL sensor preparation method was simple and sensitive, providing a new perspective for the potential application of multi-color ECL in the sensing field.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi 214431, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| |
Collapse
|