1
|
Pacelli C, Ferranti F, Del Bianco M. Special Issue: 'Advances in Space Biology'. Life (Basel) 2024; 14:931. [PMID: 39202673 PMCID: PMC11355448 DOI: 10.3390/life14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 09/03/2024] Open
Abstract
As we enter a new era of space exploration, space biology is at the forefront of both robotic and human space programs [...].
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Francesca Ferranti
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marta Del Bianco
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
2
|
Nardi L, Davis NM, Sansolini S, Baratto de Albuquerque T, Laarraj M, Caputo D, de Cesare G, Shariati Pour SR, Zangheri M, Calabria D, Guardigli M, Balsamo M, Carrubba E, Carubia F, Ceccarelli M, Ghiozzi M, Popova L, Tenaglia A, Crisconio M, Donati A, Nascetti A, Mirasoli M. APHRODITE: A Compact Lab-on-Chip Biosensor for the Real-Time Analysis of Salivary Biomarkers in Space Missions. BIOSENSORS 2024; 14:72. [PMID: 38391991 PMCID: PMC10887022 DOI: 10.3390/bios14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).
Collapse
Affiliation(s)
- Lorenzo Nardi
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Serena Sansolini
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Thiago Baratto de Albuquerque
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mohcine Laarraj
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Michele Balsamo
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Elisa Carrubba
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Fabrizio Carubia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marco Ceccarelli
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Michele Ghiozzi
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Liyana Popova
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Andrea Tenaglia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marino Crisconio
- Agenzia Spaziale Italiana (ASI), Italian Space Agency, Via del Politecnico, I-00133 Rome, Italy;
| | - Alessandro Donati
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
3
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|
4
|
Calabria D, Pace A, Lazzarini E, Trozzi I, Zangheri M, Guardigli M, Pieraccini S, Masiero S, Mirasoli M. Smartphone-Based Chemiluminescence Glucose Biosensor Employing a Peroxidase-Mimicking, Guanosine-Based Self-Assembled Hydrogel. BIOSENSORS 2023; 13:650. [PMID: 37367015 DOI: 10.3390/bios13060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Chemiluminescence is widely used for hydrogen peroxide detection, mainly exploiting the highly sensitive peroxidase-luminol-H2O2 system. Hydrogen peroxide plays an important role in several physiological and pathological processes and is produced by oxidases, thus providing a straightforward way to quantify these enzymes and their substrates. Recently, biomolecular self-assembled materials obtained by guanosine and its derivatives and displaying peroxidase enzyme-like catalytic activity have received great interest for hydrogen peroxide biosensing. These soft materials are highly biocompatible and can incorporate foreign substances while preserving a benign environment for biosensing events. In this work, a self-assembled guanosine-derived hydrogel containing a chemiluminescent reagent (luminol) and a catalytic cofactor (hemin) was used as a H2O2-responsive material displaying peroxidase-like activity. Once loaded with glucose oxidase, the hydrogel provided increased enzyme stability and catalytic activity even in alkaline and oxidizing conditions. By exploiting 3D printing technology, a smartphone-based portable chemiluminescence biosensor for glucose was developed. The biosensor allowed the accurate measurement of glucose in serum, including both hypo- and hyperglycemic samples, with a limit of detection of 120 µmol L-1. This approach could be applied for other oxidases, thus enabling the development of bioassays to quantify biomarkers of clinical interest at the point of care.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Andrea Pace
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Elisa Lazzarini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum-University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant'Alberto 163, I-48123 Ravenna, Italy
| | - Silvia Pieraccini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Stefano Masiero
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant'Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|