1
|
Silver K, Li J, Porch A, Jamieson WD, Castell O, Dimitriou P, Kallnik C, Barrow D. 3D-printed microfluidic-microwave device for droplet network formation and characterisation. LAB ON A CHIP 2024; 24:5101-5112. [PMID: 39324512 DOI: 10.1039/d4lc00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microfluidic-microwave devices (MMDs) have emerged as precision tools for the rapid, accurate, sensitive, and non-invasive characterisation of liquids in low-volumes. However, the fabrication of MMDs remains a significant challenge. This is due to the complexities associated with integrating fluidic ducts and electronic components. Herein, we present a versatile and economical 3D-printing approach using ducts filled with liquid metal as an electrical conductor. Cyclic olefin copolymer, polylactic acid, and polypropylene were identified as printable dielectric materials for MMD fabrication. Substrates of 3D-printed cyclic olefin copolymer exhibited the lowest loss tangent (0.002 at 2.7 GHz), making them suitable materials for high-frequency microwave devices. Liquid metal, specifically gallium-indium eutectic, was injected into the printed ducts to form electrically conductive microwave structures. Exemplary MMDs operating at 2 GHz integrated split-ring microwave resonators that serve as sensitive detection geometries able to measure changes in dielectric properties, with droplet-forming fluidic junctions and flow channels. The performance of 3D-printed MMDs for microwave droplet sensing was comprehensively evaluated. These devices were used in the formation and characterisation of water-in-oil emulsions, constructing definable lipid-segregated droplet interface bilayer (DIB) networks. This work indicates the feasibility of using 3D-printed manifolds for the rapid prototyping of customised MMDs, and also demonstrates the potential of MMDs as new analytical research tools in droplet-based materials and biochemistry studies.
Collapse
Affiliation(s)
- Kai Silver
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Adrian Porch
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Oliver Castell
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | | | - Colin Kallnik
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - David Barrow
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| |
Collapse
|
2
|
Lin H, Li B, Guo J, Mai X, Yu H, Pan W, Wu B, Liu W, Zhong M, Liao T, Zhang Y, Situ B, Yan X, Liu Y, Liu C, Zheng L. Simultaneous detection of membrane protein and mRNA at single extracellular vesicle level by droplet microfluidics for cancer diagnosis. J Adv Res 2024:S2090-1232(24)00369-2. [PMID: 39197817 DOI: 10.1016/j.jare.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Simultaneous detection of proteins and mRNA within a single extracellular vesicle (EV) enables comprehensive analysis of specific EVs subpopulations, significantly advancing cancer diagnostics. However, developing a sensitive and user-friendly approach for simultaneously detecting multidimensional biomarkers in single EV is still challenging. OBJECTIVES To facilitate the analysis of multidimensional biomarkers in EVs and boost its clinical application, we present a versatile droplet digital system facilitating the concurrent detection of membrane proteins and mRNA at the single EV level with high sensitivity and specificity. METHODS The antibody-DNA conjugates were firstly prepared for EVs protein biomarkers recognition and signal transformation. Coupling with the assembled triplex droplet digital PCR system, a versatile droplet digital analysis assay for simultaneous detection of membrane protein and mRNA at a single EV level was developed. RESULTS Our new droplet digital system displayed high sensitivity and specificity. Additionally, its clinical application was validated in a breast cancer cohort. As expected, this assay has demonstrated superior performance in distinguishing breast cancer from healthy individuals and benign controls through combined detection of EVs protein and mRNA markers compared to any single kind marker detections, especially for patients with breast cancer at early stage (AUC=0.9229). CONCLUSION Consequently, this study proposes a promising strategy for accurately identifying and analyzing specific EV subgroups through the co-detection of proteins and mRNA at the single EV level, holding significant potential for future clinical applications.
Collapse
Affiliation(s)
- Huixian Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueying Mai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haiyang Yu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bodeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingzhen Zhong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Liao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Yan
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Wang Y, Wang Y, Wang X, Sun W, Yang F, Yao X, Pan T, Li B, Chu J. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing. Talanta 2024; 276:126299. [PMID: 38788384 DOI: 10.1016/j.talanta.2024.126299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Droplet microfluidics-based single-cell encapsulation is a critical technology that enables large-scale parallel single-cell analysis by capturing and processing thousands of individual cells. As the efficiency of passive single-cell encapsulation is limited by Poisson distribution, active single-cell encapsulation has been developed to theoretically ensure that each droplet contains one cell. However, existing active single-cell encapsulation technologies still face issues related to fluorescence labeling and low throughput. Here, we present an active single-cell encapsulation technique by using microvalve-based drop-on-demand technology and real-time image processing to encapsulate single cells with high throughput in a label-free manner. Our experiments demonstrated that the single-cell encapsulation system can encapsulate individual polystyrene beads with 96.3 % efficiency and HeLa cells with 94.9 % efficiency. The flow speed of cells in this system can reach 150 mm/s, resulting in a corresponding theoretical encapsulation throughput of 150 Hz. This technology has significant potential in various biomedical applications, including single-cell omics, secretion detection, and drug screening.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Yousu Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaojie Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Baoqing Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China.
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
4
|
Liang L, Liang M, Zuo Z, Ai Y. Label-free single-cell analysis in microdroplets using a light-scattering-based optofluidic chip. Biosens Bioelectron 2024; 253:116148. [PMID: 38428071 DOI: 10.1016/j.bios.2024.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Droplet-based single-cell analysis is a very powerful tool for studying phenotypic and genomic heterogeneity at single-cell resolution for a variety of biological problems. In conventional two-phase droplet microfluidics, due to the mismatch in optical properties between oil and aqueous phases, light scattering mainly happens at the oil/water interface that disables light-scattering-based cell analysis confined in microdroplets. Detection and analysis of cells in microdroplets thus mostly rely on the fluorescence labeling of cell samples, which may suffer from complex operation, cytotoxicity, and low fluorescence stability. In this work, we propose a novel light-scattering-based droplet screening (LSDS) that can effectively detect and characterize single cells confined in droplets by adjusting the optical properties of droplets in a multiangle optofluidic chip. Theoretical and simulated calculations suggest that refractive index (RI) matching in droplet two-phase materials can reduce or eliminate droplets' scattered signals (background signal), enabling the differentiation of scattered signals from single cells and particles within droplets. Furthermore, by using a set of multiangle (from -145° to 140°) optical fibers integrated into the optofluidic chip, the scattered light properties of droplets with the RI ranging from 1.334 to 1.429 are measured. We find that the smaller the RI and size of microparticles inside droplets are, the smaller the RI difference between two-phase materials Δn is required. Especially, when Δn is smaller than 0.02, single cells in droplets can be detected and analyzed solely based on light scattering. This capability allows to accurately detect droplets containing one single cell and one single gel bead, a typical droplet encapsulation for single-cell sequencing. Altogether, this work provides a powerful platform for high-throughput label-free single-cell analysis in microdroplets for diverse single-cell related biological assays.
Collapse
Affiliation(s)
- Li Liang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, China
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zewen Zuo
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
| |
Collapse
|
5
|
Cheng D, Lian W, Wang T, Xi S, Jia X, Li Z, Xiong H, Wang Y, Sun W, Zhou S, Peng L, Han L, Liu Y, Ni C. The interplay of Cxcl10 +/Mmp14 + monocytes and Ccl3 + neutrophils proactively mediates silica-induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133713. [PMID: 38335607 DOI: 10.1016/j.jhazmat.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China.
| |
Collapse
|
6
|
De Figueiredo I, Bartenlian B, Van der Rest G, Pallandre A, Halgand F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023; 11:proteomes11020019. [PMID: 37218924 DOI: 10.3390/proteomes11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Bernard Bartenlian
- Centre des Nanosciences et Nanotechnologies, Université Paris Saclay, 10 Boulevard Thomas Gobert, F91120 Palaiseau, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| |
Collapse
|