1
|
Liu S, Sun C, Zhang X, Shu R, Zhang J, Wang B, Wang K, Dou L, Huang L, Yang Q, Wang J. Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety. Biosens Bioelectron 2025; 268:116920. [PMID: 39531800 DOI: 10.1016/j.bios.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a classical and continuously developing on-site sensor, Lateral flow immunoassay (LFIA) exhibits promising potential for advanced point-of-care testing (POCT). Especially given the significance of agri-food in human dietary structure and the ever-increasing agri-food safety concerns, improved analysis performance of LFIA is urgently required. Recently, flourishing enhancement-type signal tracers (STs) and brilliant enhancement-type analysis strategies have been actively pursued in the development of LFIA because these patterns endow immense feasibility in manufacturing target-oriented sensing platforms. To facilitate further advancements in this field, this review comprehensively examines the recent developments in enhancement-type STs (e.g., load-, green-, recognizable-, Janus-, and dyestuffs-type STs) and enhancement-type analysis strategies (e.g. immuno-network, in-situ growth, nanozymes, multi-signal readout, and software-assisted quantitative analytical strategies) that significantly improve precise analysis efficiency. Moreover, by conducting a comprehensive evaluation of the major advancements and aiming to identify future trends in LFIA-based sensor, the objective of this review is to provide recommendations for future research based on the challenges and opportunities of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiyue Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhang X, Xu Y, Wang X, Chen T, Yao Q, Chang S, Guo X, Liu X, Wu H, Cui Y, Wang J, Ji Y. Enhanced immunochromatographic assay using multifunctional gold@iridium nanoflower with colorimetric photothermal catalytic activity for the detection of staphylococcal enterotoxin B. Food Chem 2024; 460:140710. [PMID: 39106748 DOI: 10.1016/j.foodchem.2024.140710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The development of a rapid, sensitive, and accurate screening method for staphylococcal enterotoxin B (SEB) in food is urgently needed because trace amounts of SEB can pose a serious threat to human health. Here, we developed a ultrasensitive triple-modal immunochromatographic assay (ICA) for SEB detection. The AuNFs@Ir nanoflowers exhibited enhanced colorimetric, photothermal, and catalytic performance by modulating the sharp branching structure of the gold nanoflowers and depositing high-density Ir atoms. Subsequently, the combination of AuNFs@Ir and ICA promoted colorimetric, catalytic amplified colorimetric, and photothermal-assisted quantitative detection. The results showed detection limits of 0.175, 0.0188, and 0.043 ng mL-1 in the colorimetric/photothermal/catalytic mode, which increased the sensitivity by 16.5-fold, 153.7-fold, and 67.2-fold, respectively, compared with the AuNPs-ICA. Furthermore, the proposed strategy was verified in milk, milk powder, pork, and beef successfully. This strategy improves significantly the sensitivity, accuracy, flexibility and offers an effective insight for foodborne bacterial toxin monitoring.
Collapse
Affiliation(s)
- Xiaoling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianxi Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaohe Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuhua Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Shan J, Yin X, Liu S, Gong W, Bai Y, Du T, Sun J, Zhang D, Gu Y, Wang J. Defect-Engineering-Induced Vacancy-Rich Bi 2S 3-x@AuNPs with Enhanced Photothermal Activity for Sensitive Bimodal-Type Gentamicin Monitoring. Anal Chem 2024; 96:18564-18573. [PMID: 39508731 DOI: 10.1021/acs.analchem.4c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
One of the most promising approaches to effectively modulate the performance of immunochromatography (ICA) is the rational design of nanomaterials. It is anticipated to facilitate highly sensitive ICA analysis by introducing and controlling the internal defect structures of nanomaterials. Herein, we designed Bi2S3-x@AuNPs with deep-level defect properties, revealing that these deep defects act as electron-hole nonradiative complex centers to promote phonon production, ultimately leading to photothermal analytical performance in ICA. By effectively regulating the defect density, the assay showed extraordinary colorimetric intensity, photothermal performance, and stability, which were conducive to constructing sensitive ICA. With a proof-of-concept for gentamicin (Gen), the limit of detection (LOD) was determined to be 0.0358 ng mL-1, with overall recoveries ranging from 84.40% to 108.30% in both milk and milk powder samples. It demonstrates the importance of the rational design of internal defect structures to improve analytical performance and broaden the application of ICA.
Collapse
Affiliation(s)
- Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Weijie Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yunyan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Huang Q, Yang Y, Abbas MS, Pei S, Ro CU, Dong C, Geng H. Multifunctional magnetic tags with photocatalytic and enzyme-mimicking properties for constructing a sensitive dual-readout ELISA. Food Chem 2024; 457:140085. [PMID: 38908250 DOI: 10.1016/j.foodchem.2024.140085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
ELISA has become the gold standard for detecting harmful substances due to its specific antibody recognition and sensitive enzyme-catalyzed reactions. In this study, multifunctional magnetic Prussian blue nanolabels (MPBNs) were synthesized using a simple gentle two-step method to achieve a dual-readout mode. The MPBNs provide a sensitive colorimetric signal by efficiently catalyzing the oxidation of TMB and exhibit prominent photocatalytic degradation activity towards Rhodamine B (RhB). Supplemented by the quenching effect of oxTMB, the fluorescence was enabled to serve as a sensitive second signal. The magnetic property of the labels facilitates the separation and enrichment of the target, thereby improving sensitivity. Utilizing the versatile MPBNs, the visual limit of detection (vLOD) for Staphylococcus aureus is as low as 100 CFU/mL, with a quantitative analysis range of 102-108 CFU/mL. The introduction of photocatalytic reactions into immunoassay has opened up a new signal response system with strong momentum for development and application.
Collapse
Affiliation(s)
- Qiong Huang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yajuan Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | | | - Shiqi Pei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon, 402-751, Republic of Korea
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Yellow River Laboratory, Taiyuan 030031, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Xu C, Xie J, Yu L, Shu B, Liu X, Chen S, Li Q, Qi S, Zhao S. Sensitive colorimetric detection of Vibrio vulnificus based on target-induced shielding against the peroxidase-mimicking activity of CeO 2@PtRu nanozyme. Food Chem 2024; 454:139757. [PMID: 38805924 DOI: 10.1016/j.foodchem.2024.139757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Vibrio vulnificus infection caused by contaminated aquatic products and seawater can lead to severe disease and high mortality. The development of a rapid and sensitive detection method for Vibrio vulnificus is vital to effectively prevent infection in advance. In this study, CeO2@PtRu with high peroxidase activity was used to construct a colorimetric immunoassay for Vibrio vulnificus detection by conjugating polyclonal antibodies via the biotin-streptavidin system. The developed colorimetric biosensor for Vibrio vulnificus demonstrated rapid operability and good sensitivity with a detection range from 104 CFU/mL to 109 CFU/mL, and the limit of detection (LOD) is 193 CFU/mL. Moreover, the colorimetric biosensor showed excellent specificity and good recoveries from 98.70% to 102.10% with RSD < 7.45% for spiked real samples. This novel CeO2@PtRu-based colorimetric biosensor has great application potential for the sensitive detection of Vibrio vulnificus in seafood.
Collapse
Affiliation(s)
- Chenjing Xu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jinpo Xie
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lian Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Bin Shu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaogang Liu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Siping Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
7
|
Zhang F, Li Y, Jafari SM, Liu Y, Sang Y, Wang S, Wang X. Microfluidic-oriented green synthesis of pepsin-doped gold nanoparticles for colorimetric and photothermal dual-readout detection of food hazards. Food Chem 2024; 450:139311. [PMID: 38636377 DOI: 10.1016/j.foodchem.2024.139311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Gold nanoparticles (AuNPs)-based immunochromatographic assay has gained popularity as a rapid detection method for food hazards. Synthesizing highly stable AuNPs in a rapid, simple and environmentally friendly manner is a key focus in this field. Here, we present a green microfluidic strategy for the rapid, automated, and size-controllable synthesis of pepsin-doped AuNPs (AuNPs@Pep) by employing glucose-pepsin as a versatile reducing agent and stabilizer. Through combining the colorimetric and photothermal (PoT) properties of AuNPs@Pep, both "signal-off" and "signal-on" formats of microfluidic paper analytical devices (PADs) were developed for detection of a small molecule antibiotic, florfenicol, and an egg allergen, ovalbumin. Compared to the colorimetric mode, a 4-fold and 3-fold improvement in limit of detection was observed in the "signal-off" detection of florfenicol and the "signal-on" detection of ovalbumin, respectively. The results demonstrated the practicality of AuNPs@Pep as a colorimetric/PoT dual-readout probe for immunochromatographic detection of food hazards at different molecular scales.
Collapse
Affiliation(s)
- Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yamei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Yang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Medical College, Nankai University, Tianjin 300500, China.
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Gu X, Tang Q, Kang X, Ji H, Shi X, Shi L, Pan A, Zhu Y, Jiang W, Zhang J, Liu J, Wu M, Wu L, Qin Y. A portable CRISPR-Cas12a triggered photothermal biosensor for sensitive and visual detection of Staphylococcus aureus and Listeria monocytogenes. Talanta 2024; 271:125678. [PMID: 38277968 DOI: 10.1016/j.talanta.2024.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.
Collapse
Affiliation(s)
- Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xiuying Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Linyi Shi
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Anli Pan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mingmin Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
9
|
Wang Y, Du P, Shao Y, Wang W, Liu Y, Ma Y, Hu P, Cao J, Wang X, Abd El-Aty AM. An Innovative and Efficient Fluorescent Detection Technique for Salmonella in Animal-Derived Foods Using the CRISPR/Cas12a-HCR System Combined with PCR/RAA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8831-8839. [PMID: 38575365 DOI: 10.1021/acs.jafc.3c08829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Here, we present a method for Salmonella detection using clustered regularly interspaced short palindromic repeats associated with the CRISPR-associated protein 12a-hybridization chain reaction (CRISPR/Cas12a-HCR) system combined with polymerase chain reaction/recombinase-assisted amplification (PCR/RAA) technology. The approach relies on the Salmonella invA gene as a biorecognition element and its amplification through PCR and RAA. In the presence of the target gene, Cas12a, guided by crRNA, recognizes and cleaves the amplification product, initiating the HCR. Fluorescently labeled single-stranded DNA (ssDNA) H1 and H2 were introduced, and the Salmonella concentration was determined based on the fluorescence intensity from the triggered HCR. Both assays demonstrate high specificity, sensitivity, simplicity, and rapidity. The detection range was 2 × 101-2 × 109 CFU/mL, with an LOD of 20 CFU/mL, and the entire process enabled specific and rapid Salmonella detection within 85-105 min. Field-incurred spiked recovery tests were conducted in mutton and beef samples using both assays, demonstrating satisfactory recovery and accuracy in animal-derived foods. By combining CRISPR/Cas12a with hybridization chain reaction technology, this study presents a rapid and sensitive Salmonella detection method that is crucial for identifying pathogenic bacteria and monitoring food safety.
Collapse
Affiliation(s)
- Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
10
|
Hong F, Zhao Y, Pan S, Ren L, Jiang F, Wu L, Chen Y. Click Reaction-Mediated Fluorescent Immunosensor Based on Cu-MOF Nanoparticles for Ultrasensitive and High-Throughput Detection of Aflatoxin B 1 in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5975-5982. [PMID: 38462975 DOI: 10.1021/acs.jafc.3c09730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Due to the high toxicity of aflatoxin B1 and its risks to human health, we developed a click reaction-mediated automated fluorescent immunosensor (CAFI) for sensitive detection of aflatoxin B1 based on the Cu(I)-catalyzed click reaction. With its large specific surface area, a copper-based metal-organic framework (Cu-MOF) was synthesized to adsorb and enrich the copper ion (Cu(II)) and then load the complete antigen (BSA-AFB1). After the immunoreaction, Cu(II) inside the Cu-MOF-Antigen conjugate would be reduced to Cu(I) in the presence of sodium ascorbate, which triggered the click reaction between the fluorescent donor-modified DNA and the receptor-modified complementary DNA to lead to a fluorescence signal readout. The whole reaction steps were finished by the self-developed automated immunoreaction device. This CAFI method showed a limit of detection (LOD) of 0.48 pg/mL as well as a 670-fold enhancement in sensitivity compared to conventional ELISA, revealing its great potential in practical applications and automated detection.
Collapse
Affiliation(s)
- Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixing Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangqiong Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
12
|
Yuan J, Wang L, Huang L, He K, Wang H, Xu X, Su B, Wang J. CRISPR-Cas12a-Mediated Hue-Recognition Lateral Flow Assay for Point-of-Need Detection of Salmonella. Anal Chem 2024; 96:220-228. [PMID: 38109169 DOI: 10.1021/acs.analchem.3c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nucleic acid detection of pathogens in a point-of-need (PON) manner is of great significance yet remains challenging for sensitive and accurate visual discrimination. Here, we report a CRISPR-Cas12a-mediated lateral flow assay for PON detection of Salmonella typhimurium (S.ty) that is a prevailing pathogen disseminated through tainted food. The variation of the fluorescence color of the test line is exploited to interpret the results, enabling the discrimination between positive and negative samples on the basis of a hue-recognition mechanism. By leveraging the cleavage activity of Cas12a and hue-recognition readout, the assay facilitated by recombinase polymerase amplification can yield a visual detection limit of 1 copy μL-1 for S.ty genomic DNA within 1 h. The assay also displays a high specificity toward S.ty in fresh chicken samples, as well as a sensitivity 10-fold better than that of the commercial test strip. Moreover, a semiquantitative detection of S.ty ranging from 0 to 4 × 103 CFU/mL by the naked eye is made possible, thanks to the easily discernible color change of the test line. This approach provides an easy, rapid, accurate, and user-friendly solution for the PON detection of Salmonella and other pathogens.
Collapse
Affiliation(s)
- Jingrui Yuan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
13
|
Kim YC, Jun SW, Ahn YH. Single bacteria identification with second-harmonic generation in MoS 2. Biosens Bioelectron 2023; 241:115675. [PMID: 37725844 DOI: 10.1016/j.bios.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Transition-metal dichalcogenides exhibit extraordinary optical nonlinearities, making them promising candidates for advanced photonic applications. Here, we present the microbial control over second-harmonic generation (SHG) in monolayer MoS2 and the identification of single-cell bacteria. Bacteria deposited on monolayer MoS2 induce a change in the SHG signal, in the form of anisotropic polarization responses that depend on the relative orientation of the bacteria with respect to the MoS2 crystallographic direction. The anisotropic enhancement is consistent with the presence of a tensile stress along the lateral direction of bacteria axis; SHG imaging is highly effective in monitoring biomaterial strain as low as 0.1%. We also investigate the ultraviolet-induced removal of single bacteria, through the SHG imaging of MoS2. By monitoring the transient SHG signals, we determine the rupture times for bacteria, which varies noticeably for each species. This allows us to distinguish specific bacteria that share habitats; SHG imaging is useful for label free identification of pathogens at the single cell levels such as E. coli and L. casei. This label-free detection and identification of pathogens at the single-cell level can have a profound impact on the development of diagnostic tools for various applications.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Seung Won Jun
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea.
| |
Collapse
|