1
|
Lu H, Xiang Z, Pang H, Ren Q. Rational design of Ag-doped MnFe 2O 4/HNTs for peroxidase-mimicking activity and colorimetric sensing of uric acid in human serum. Talanta 2025; 281:126913. [PMID: 39305758 DOI: 10.1016/j.talanta.2024.126913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Mimicking enzyme have significantly advanced sensing assays by replicating native enzyme functions, yet achieving both high catalytic activity and easy recyclability remains a challenge. In this study, Ag-doped MnFe2O4/halloysite nanotubes (HNTs) were rationally designed as a novel nanozyme by depositing in-situ Ag and MnFe2O4 nanoparticles onto HNTs. The resulting nanocomposite exhibited excellent peroxidase-like activity along with magnetic properties. Leveraging these features, a highly efficient and sensitive colorimetric system for detecting uric acid (UA) was developed. The Ag-doped MnFe2O4/HNTs catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2, causing a color change from colorless to blue. The system showed a linear absorbance response to UA concentrations ranging from 1 to 20 μM, with a detection limit of 59 nM. Mechanistic studies revealed that reactive oxygen species intermediates (1O2) were generated through the decomposition of H2O2, leading to peroxidase-like activity in the Ag-doped MnFe2O4/HNTs. The assay was successfully applied to detect UA in human serum with recoveries over 99.68 %. This study indicates the successful application of Ag-doped MnFe2O4/HNTs for colorimetric UA detection in human serum. This research introduces a novel approach for designing recyclable, high-performance mimicking enzyme and establishes an effective colorimetric sensing platform for UA detection in human serum.
Collapse
Affiliation(s)
- Han Lu
- Department of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao 276826, Shandong, China
| | - Zhenbo Xiang
- Rizhao Science and Technology Innovation Service Center, Rizhao 276800, Shandong, China.
| | - Hailong Pang
- Department of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao 276826, Shandong, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao 276826, Shandong, China.
| |
Collapse
|
2
|
Hu C, Xie W, Liu J, Zhang Y, Sun Y, Cai Z, Lin Z. Bioinspired Iron Porphyrin Covalent Organic Frameworks-Based Nanozymes Sensor Array: Machine Learning-Assisted Identification and Detection of Thiols. ACS APPLIED MATERIALS & INTERFACES 2024; 16:71048-71059. [PMID: 39666900 DOI: 10.1021/acsami.4c18284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Given the crucial role of thiols in maintaining normal physiological functions, it is essential to establish a high-throughput and sensitive analytical method to identify and quantify various thiols accurately. Inspired by the iron porphyrin active center of natural horseradish peroxidase (HRP), we designed and synthesized two iron porphyrin covalent organic frameworks (Fe-COF-H and Fe-COF-OH) with notable peroxidase-like (POD) activity, capable of catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB with three distinct absorption peaks. Based on these, a six-channel nanozyme colorimetric sensor array was constructed, which could map the specific fingerprints of various thiols. Subsequently, machine learning techniques, including supervised learning with linear discriminant analysis (LDA), decision trees (DT) and artificial neural networks (ANN), unsupervised learning with hierarchical cluster analysis (HCA), and ensemble learning with random forests (RF), were used for precise identification of thiols in complex systems, with a detection limit as low as 50 nM. Significantly, the sensor array demonstrated strong potential for practical applications, including analyzing homocysteine (Hcy) in human serum, mercaptoacetic acid (TGA) in depilatory creams, and glutathione (GSH) in cell lysates, thereby showing promise for use in disease diagnosis.
Collapse
Affiliation(s)
- Cong Hu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jin Liu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yajing Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong 999077, Special Administrative Region, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
3
|
Hao X, Song W, Wang Y, Qin J, Jiang Z. Recent Advancements in Electrochemical Sensors Based on MOFs and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408624. [PMID: 39676419 DOI: 10.1002/smll.202408624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Metal-organic frameworks (MOFs) are composed of metal nodes and organic linkers that can self-assemble into an infinite network. The high porosity and large surface area of MOFs facilitate the effective enrichment and mass transfer of analytes, which can enhance the signal response and improve the sensitivity of electrochemical sensors. Additionally, MOFs and their derivatives possess the properties of unsaturated metal sites and tunable structures, collectively demonstrating their potential for electrochemical sensing. This paper summarizes the preparation methods, structural properties, and applications of MOFs and their derivatives in electrochemical sensing, emphasizing sensors' selectivity and sensitivity from the perspectives of direct and indirect detection. Additionally, it also explores future directions and prospects for MOFs in electrochemical sensing, with the aim of overcoming current limitations through innovative approaches.
Collapse
Affiliation(s)
- Xi Hao
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Yinghui Wang
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462005, China
| | - Jieling Qin
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Wen X, Li H, Ju Z, Deng R, Parker D. Mechanism of action and evaluation of ratiometric probes for uric acid using lanthanide complexes with tetraazatriphenylene sensitisers. Chem Sci 2024; 15:19944-19951. [PMID: 39568872 PMCID: PMC11575574 DOI: 10.1039/d4sc05743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
A series of new ligands has been prepared that incorporate electron-poor aromatic moieties (dpqMe2 and dpqPh2 chromophores) into tetraazacyclododecane or triazacyclononane based complex structures, and the time-dependent photophysical properties of their Eu(iii) and Tb(iii) complexes evaluated for the selective and rapid ratiometric analysis of urate in diluted serum solution, together with mechanistic studies probing the nature of the intermediate exciplex and the excited state dynamics using transient absorption spectroscopy.
Collapse
Affiliation(s)
- Xinyi Wen
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| | - Huishan Li
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| | - Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China
| | - David Parker
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| |
Collapse
|
5
|
Saraiva DPM, Ferreira B, Ribeiro LMA, R L C Paixão T, Bertotti M. Cost-effective quantification of uric acid using niobium oxide and graphene oxide-modified pencil-drawn electrodes on PVC substrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7407-7412. [PMID: 39361013 DOI: 10.1039/d4ay01345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
This study introduces a cost-effective approach for quantifying uric acid (UA), the main antioxidant species in human physiology and implicated in inflammatory regulation. Using a PVC substrate and pencil drawing technique, electrodes were fabricated and modified with niobium oxide and graphene oxide via a straightforward "drop casting" method. The nanostructures of the substrate, electrode, and modified electrode were evaluated using SEM images. The synergistic effect between these materials significantly facilitated the uric acid oxidation process with a 400 mV peak potential shift and 45% current increase. The evaluation of the electrode's response to common blood and urine components showed minimal deviation. Among the components tested-ascorbic acid, glucose, nitrate, nitrite, cysteine, urea, creatinine, and ammonium ion-only the ammonium ion exhibited a 10% interference at concentrations commonly found in urine. The sensors showed a good detection limit of 8.7 μmol L-1, with a wide linear range from 8.7 to 2000 μmol L-1 with a correlation factor of 0.9993 for five different sensors. The reproducibility and repeatability of the produced sensors were estimated by the RSD at 4% and 1%, respectively. Synthetic urine samples spiked exhibited reliable analysis, with recovery values within a 5% error margin. This work presents a practical, simple, and affordable sensor platform for rapid and accurate UA quantification.
Collapse
Affiliation(s)
- Douglas P M Saraiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Bruno Ferreira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Leonardo M A Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Thiago R L C Paixão
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Qi C, Chen J, Shang Y, Yang Y, Wang K, Chen J. Target-Triggered Ultrafast Chondroitin Gelation Enabled Power-Free and Point-of-Care Bioassays. Anal Chem 2024; 96:17781-17788. [PMID: 39436985 DOI: 10.1021/acs.analchem.4c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Point-of-care (POC) tests increasingly highlight the importance of portable, cost-effective, and visually quantitative detection of biomarkers. Herein, we developed a power-free and visual signal-readout POC sensor based on the target-triggered ultrafast gelation process. In the gelation process, the target triggered the cascade reaction catalyzed by oxidase and ferrous glycinate to produce carbon radicals that immediately initiated the rapid polymerization and cross-linking of acryloylated chondroitin sulfate and dimethylacrylamide. This highly efficient enzymatic polymerization process contributed to the ultrafast generation of chondroitin hydrogel within 1 min at 25 °C. The increase in viscosity of aqueous solution resulted from hydrogel formation was then visually measured according to the distance of solution migration on a tick-labeled pH test strip, which thus realized the quantification of a target. By utilizing glucose oxidase as an oxidase model during the gelation process, this POC sensor was successfully employed in the rapid quantitative detection of glucose without the need for any auxiliary instruments. Benefiting from the specificity and stability of the enzymatic polymerization reaction, the sensor exhibited excellent performance in the detection of glucose in clinical blood samples. Moreover, the sensor was further extended to uric acid detection and enabled accurate assay in clinical urine samples, which indicated the versatility and practicability of this sensor in the POC test.
Collapse
Affiliation(s)
- Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yuhui Shang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yu Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Kangyan Wang
- Department of Clinical Laboratory, Hubei University of Science and Technology Affiliated Xishui Hospital, Huanggang 438200, Hubei, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| |
Collapse
|
7
|
Leelasattarathkul T, Trakoolwilaiwan T, Khachornsakkul K. A gold nanomaterial-integrated distance-based analytical device for uric acid quantification in human urine samples. Analyst 2024; 149:5518-5526. [PMID: 39420824 DOI: 10.1039/d4an01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this article, we present the first demonstration of a distance-based paper analytical device (dPAD) for uric acid quantification in human urine samples with instrument-free readout and user-friendliness for the rapid diagnosis and prognosis of various related diseases. By employing gold nanoparticles (AuNPs) as a peroxidase-like nanozyme, our proposed technique eliminates the utilization of horseradish peroxidase (HRP), making the device cost-effective and stable. In our dPAD, uric acid in the sample is oxidized by the uricase enzyme and subsequently catalysed with AuNPs in the sample zone, generating hydroxyl radicals (˙OH). Then, the produced ˙OH reacts with 3,3'-diaminobenzidine (DAB) to form poly DAB (oxDAB), resulting in a coloured distance signal in the detection zone of the dPAD. The variation of the distance of the observed red-brown colour is directly proportional to the uric acid concentration. Our sensor exhibited a linear range from 0.50 to 6.0 mmol L-1 (R2 = 0.9922) with a detection limit (LOD) of 0.25 mmol L-1, covering the clinical range of uric acid in urine. Hence, there is no need for additional sample preparation or dilution. Additionally, this assay is highly selective, with no interferences. We also found that this approach could accurately and precisely determine uric acid in human control samples with the recovery ranging from 99.37 to 100.35 with the highest RSD of 4.05%. Our method is comparable with the use of a commercially available uric acid sensor at a 95% confidence interval. Consequently, the developed dPAD offers numerous advantages such as cost-effectiveness, simplicity, and ease of operation with unskilled individuals. Furthermore, this concept can be applied for extensive biosensing applications in monitoring other biomarkers as an alternative analytical point-of-care (POC) device.
Collapse
Affiliation(s)
- Tapparath Leelasattarathkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
| | - Thithawat Trakoolwilaiwan
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120 Thailand
| | - Kawin Khachornsakkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
8
|
Khibari S, Lahmadi S, Beagan A, Alharthi F, Alsalme A, Alzahrani K, Almeataq M, Alotaibi K, Alswieleh A. Gold nanostructures on polyelectrolyte-brush-modified cellulose membranes as a synergistic platform for uric acid detection. Talanta 2024; 279:126586. [PMID: 39079434 DOI: 10.1016/j.talanta.2024.126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
In this study, we present a convenient approach utilizing gold nanostructures coated cellulose membrane for the quantification of uric acid in an aqueous solution. The synthesis of system was achieved by functionalizing cellulose membrane with poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) and cross-linked with ethylene glycol dimethacrylate (EGDMA). FT-IR and XPS confirm the formation of PMETAC and PMETAC/EGDMA on the cellulose. The fabricated substrates were exposed to tetrachloroaurate solution, then reduced by NaBH4. We have systematically investigated the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) in various pH conditions, absent uric acid, using the fabricated substrates. The colorimetric response-observed through UV-Vis spectroscopy-revealed significant shifts in absorbance at 660 nm, correlating with uric acid concentrations across a range of pH levels. The films exhibited a pronounced color change from green to light yellow in basic to neutral environments and from yellow to dark green under more acidic conditions, demonstrating their potential for high-sensitivity uric acid detection. The assessment of the catalytic films' reusability and stability revealed insights into their enduring performance, identifying opportunities for enhancing material design and functionality for extended applications. This study not only underscores the films' versatile detection capabilities but also emphasizes the importance of pH in tuning the assay's sensitivity and specificity.
Collapse
Affiliation(s)
- Shrooq Khibari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shatha Lahmadi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abeer Beagan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Alzahrani
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Almeataq
- King Abdulaziz City for Science and Technology, Riyadh P.O. Box 11442, Saudi Arabia
| | - Khalid Alotaibi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Alswieleh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
10
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Luo F, Li Z, Shi Y, Sun W, Wang Y, Sun J, Fan Z, Chang Y, Wang Z, Han Y, Zhu Z, Marty JL. Integration of Hollow Microneedle Arrays with Jellyfish-Shaped Electrochemical Sensor for the Detection of Biomarkers in Interstitial Fluid. SENSORS (BASEL, SWITZERLAND) 2024; 24:3729. [PMID: 38931517 PMCID: PMC11207310 DOI: 10.3390/s24123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
This study integrates hollow microneedle arrays (HMNA) with a novel jellyfish-shaped electrochemical sensor for the detection of key biomarkers, including uric acid (UA), glucose, and pH, in artificial interstitial fluid. The jellyfish-shaped sensor displayed linear responses in detecting UA and glucose via differential pulse voltammetry (DPV) and chronoamperometry, respectively. Notably, the open circuit potential (OCP) of the system showed a linear variation with pH changes, validating its pH-sensing capability. The sensor system demonstrates exceptional electrochemical responsiveness within the physiological concentration ranges of these biomarkers in simulated epidermis sensing applications. The detection linear ranges of UA, glucose, and pH were 0~0.8 mM, 0~7 mM, and 4.0~8.0, respectively. These findings highlight the potential of the HMNA-integrated jellyfish-shaped sensors in real-world epidermal applications for comprehensive disease diagnosis and health monitoring.
Collapse
Affiliation(s)
- Fangfang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yiping Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Wen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yuwei Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jianchao Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zheyuan Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yanyi Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jean-Louis Marty
- UFR Sciences, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
| |
Collapse
|
12
|
Zhang C, Dang W, Zhang J, Wang C, Zhong P, Wang Z, Yang Y, Wang Y, Yan X. Development of a paper-based transcription aptasensor for convenient urinary uric acid self-testing. Int J Biol Macromol 2024; 271:132241. [PMID: 38768916 DOI: 10.1016/j.ijbiomac.2024.132241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The abnormal uric acid (UA) level in urine can serve as warning signals of many diseases, such as gout and metabolic cardiovascular diseases. The current methods for detecting UA face limitations of instrument dependence and the requirement for non-invasiveness, making it challenging to fulfill the need for home-based application. In this study, we designed an aptasensor that combined UA-specific transcriptional regulation and a fluorescent RNA aptamer for convenient urinary UA testing. The concentration of UA can be translated into the intensity of fluorescent signals. The aptasensor showed higher sensitivity and more robust anti-interference performance. UA levels in the urine of different volunteers could be accurately tested using this method. In addition, a paper-based aptasensor for UA self-testing was manufactured, in which the urinary UA levels could be determined using a smartphone-based colorimetric approach. This work not only demonstrates a new approach for the design of disease-associated aptasensor, but also offers promising ideas for home-based detection of UA.
Collapse
Affiliation(s)
- Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingjing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaoxin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yufan Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Liu L, Liu G, Mu X, Zhao S, Tian J. Simple enzyme-free detection of uric acid by an in situ fluorescence and colorimetric method based on Co-PBA with high oxidase activity. Analyst 2024; 149:1455-1463. [PMID: 38190248 DOI: 10.1039/d3an01985c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, we prepared a simple and low-cost cobalt-doped Prussian blue analog (Co-PBA), which can directly oxidize 10-acetyl-3,7-dihydroxyphenoxazine and 3,3',5,5'-tetramethylbenzidine (TMB) to produce resorufin (ox-AR) with high fluorescent quantum yield and ox-TMB with blue color, respectively, without the need for unstable H2O2. Using the Michaelis-Menten curve and Lineweaver-Burk equation, the Michaelis-Menten constant of Co-PBA and the substrate TMB was found to be 0.033 mM, which was much lower than horseradish peroxidase and other reported nanozymes, showing satisfactory substrate affinity. Uric acid (UA) can cause erosion of the Co-PBA structure, and it significantly reduces the catalytic activity of Co-PBA, resulting in the decrease of the fluorescence emission signal of ox-AR and the absorption signal of ox-TMB. Based on this, a simple, sensitive, and fast fluorescence/colorimetric dual-mode uric acid detection platform was established. The detection range for UA by fluorescence method is 0.625-40 μM, and the detection limit (LOD, S/N = 3) is as low as 0.389 μM. The detection system was applied to serum samples with good recovery and can be used for field detection of UA in biological samples under different environments to meet different needs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
14
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
15
|
Wang D, Ding X, Xie J, Wang J, Li G, Zhou X. A three-in-one versatile sensor for concise detecting biogenic amines and beef freshness. Anal Chim Acta 2024; 1285:342025. [PMID: 38057062 DOI: 10.1016/j.aca.2023.342025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Biogenic amines (BAs), as important indicators for evaluating food spoilage caused by fermentation processes or microbial activities, present significant risks of food safety. Consequently, the development of a simple, sensitive, and selective detection method for amines is of great importance. In this study, we proposed a three-in-one sensor 3,6-bis(dimethylamino)-9-(ethylthio)xanthylium (PSE) for high sensitivity and selectivity detecting BAs with multimodal responses, including olfactory, colorimetric, and fluorescent signals, thus facilitating convenient real-time detection of BAs. Mechanism study indicated that the nucleophilic substitution of PSE with BAs induced such rapid multi-responses with a low detection limit (LOD = 0.03 μM). We further fabricated PSE loaded paper for portable detection of BAs vapors. And the accurate determination of BAs levels is achieved through analyzing the RGB color mode. Finally, we successfully applied these test strips for non-destructive assessing meat beef freshness with the assistance of a smartphone in on-site scenarios.
Collapse
Affiliation(s)
- Dongjuan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China
| | - Xiuqian Ding
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China
| | - Jinling Xie
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China
| | - Juan Wang
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China.
| | - Guanhao Li
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China.
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China.
| |
Collapse
|
16
|
Turan K, Üğe A, Zeybek B, Aydoğdu Tiğ G. Development of a facile electrochemical sensor based on GCE modified with one-step prepared PNMA-CeO 2-fMWCNTs composite for simultaneous detection of UA and 5-FU. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:40-50. [PMID: 38054482 DOI: 10.1039/d3ay02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, a poly(N-methyl aniline)-cerium oxide-functionalized MWCNTs (PNMA-CeO2-fMWCNTs) composite was synthesized in a one-step preparation technique. As a highly efficient modifier, the composite was used to modify the glassy carbon electrode surface for simultaneous detection of uric acid (UA) and 5-fluorouracil (5-FU). Morphological characterization of the GCE/PNMA-CeO2-fMWCNTs was studied using scanning electron microscopy. Structural characterization of the composite was performed using X-ray diffraction and Fourier-transformed infrared spectroscopy. Electron transfer properties of the prepared electrodes were carried out with electrochemical impedance spectroscopy and cyclic voltammetry. The linear working range for UA and 5-FU was found to be 0.25-50 μM and 0.5-750 μM, respectively. The limit of detection values for UA and 5-FU were 0.04 μM and 0.19 μM, respectively. The effects of various interfering substances on the electrochemical response of UA and 5-FU were investigated. The GCE/PNMA-CeO2-fMWCNTs sensor has excellent stability, reproducibility, anti-interference ability, and reproducibility. To demonstrate the practical application of the sensing platform, fetal bovine serum was selected and tested in the spiked samples, and satisfactory results were obtained. The prepared composite proved to be a promising platform for simple, rapid, and simultaneous analysis of UA and 5-FU.
Collapse
Affiliation(s)
- Kübra Turan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Ahmet Üğe
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Bülent Zeybek
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Gözde Aydoğdu Tiğ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| |
Collapse
|
17
|
Hazra P, Vadnere S, Mishra S, Halder S, Mandal S, Ghosh P. Review on Uric Acid Recognition by MOFs with a Future in Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905918 DOI: 10.1021/acsami.3c11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Uric acid (UA) is produced from purine metabolism and serves as a prevalent biomarker for multiple diseases including cancer. Hyperuricemia or hypouricemia can cause multiple dysfunctions throughout the biological processes. Consequently, there is a pressing need for monitoring UA concentration in body fluid. While clinical methods are known, the availability of a point-of-care testing (PoCT) kit remains conspicuously absent. In the case of electrochemical recognition of UA, the oxidation potential of ascorbic acid closely aligns with that of UA and thus it hinders the detection process, which eventually may result in false positive signals. Several chemosensors are known in the field of supramolecular chemistry, and metal-organic frameworks (MOFs) are one of the best-performing contenders due to their robustness, stability, and versatile structures. In this review, we tried to unbox the up-to-date development of UA sensing by MOFs. We delve into the state of UA recognition by MOFs, exploring both electrochemical and fluorometric pathways and drawing comparisons with structurally similar probes like covalent organic frameworks (COFs) to understand/establish the advantages of MOFs specifically in UA sensing. In the absence of a PoCT kit, we have provided the conceptual outlook for designing a PoCT device termed a "Urimeter" via electrochemical operation. For the first time, we have proposed different methods of how UA sensing can be tied up with artificial intelligence and machine learning (AI-ML).
Collapse
Affiliation(s)
- Poimanti Hazra
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Srushti Vadnere
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Saswat Mishra
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Shibashis Halder
- Department of Chemistry, Tej Narayan Banaili College, Bhagalpur 812007, Bihar, India
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| |
Collapse
|