1
|
Qin Y, Cui F, Lu Y, Yang P, Gou W, Tang Z, Lu S, Zhou HS, Luo G, Lyu X, Zhang Q. Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J Control Release 2025; 377:354-375. [PMID: 39577466 DOI: 10.1016/j.jconrel.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
With the growing demand for precision medicine and advancements in microneedle technology, microneedle-based drug delivery systems have evolved into integrated theranostic platforms. However, the development of these systems is currently limited by the absence of clear conclusions and standardized construction strategies. The end-to-end concept offers an innovative approach to theranostic systems by creating a seamless process that integrates target sampling, sensing, analysis, and on-demand drug delivery. This approach optimizes each step based on data from the others, effectively eliminating the traditional separation between drug delivery and disease monitoring. Furthermore, by incorporating artificial intelligence and machine learning, these systems can enhance reliability and efficiency in disease management, paving the way for more personalized and effective healthcare solutions. Based on the concept of end-to-end and recent advancements in theranostic systems, nanomaterials, electronic components, micro-composites, and data science, we propose a modular strategy for constructing integrated microneedle-based theranostic systems by detailing the methods and functions of each critical component, including monitoring, decision-making, and on-demand drug delivery units, though the total number of units might vary depending on the specific application. Notably, decision-making units are emerging trends for fully automatic and seamless systems and featured for integrated microneedle-based theranostic systems, which serve as a bridge of real-time monitoring, on-demand drug delivery, advanced electronic engineering, and data science for personalized disease management and remote medical application. Additionally, we discuss the challenges and prospects of integrated microneedle-based theranostic systems for precision medicine and clinical application.
Collapse
Affiliation(s)
- Yiming Qin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peng Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiming Gou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zixuan Tang
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Shan Lu
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - H Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoyan Lyu
- Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Yao Y, Wang D, Ma Y, Zhang S, Zhou Y, Chen W, Liu T, Cai Y, Fang L, Zhang J, Liang B. One-Step Electrochemical Modification of PEDOT:PSS/PBNPs Hybrid Hydrogel on the Screen-Printed Electrode Surface for Highly Sensitive Detection of Creatinine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70352-70361. [PMID: 39661742 DOI: 10.1021/acsami.4c17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Creatinine (CRE) is frequently measured in clinical practice due to its recognized significance as a pivotal biomarker across a spectrum of renal and cardiovascular disorders. However, the rapid and accurate detection of CRE for assessing kidney and muscle functions remains challenging. Here, we prepared the poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogel uniformly loaded with Prussian blue nanoparticles (PBNPs) via a one-step metal-assisted electrochemical modification method on the screen-printed electrode for ultrasensitive CRE detection. The conductive, porous PEDOT:PSS/PBNPs hydrogel provided a confined space that facilitated highly efficient biocatalytic cascade reactions of creatinine amidohydrolase, creatine amidinohydrolase (Cl), and sarcosine oxidase, enabling the CRE detection with a high sensitivity (40.2 μA mM-1 cm-2), a wide linear detection range (20-600 μM), and a low detection limit (8.3 μM). What is more, we developed an integrated platform utilizing a differential strategy to eliminate the interference from endogenous creatine (CR), employing a dual-channel working electrode for independent CR and CRE detection, along with modules for signal processing and wireless communication. The differential method and system were validated in simulated blood, the detection error was reduced from 41.1% to 8.89% after applying the differential method, and the recoveries ranged from 89.5% to 107.8%, with errors remaining below 12%. This PEDOT:PSS/PBNPs hydrogel CRE biosensor, based on one-step modification method, offered a promising strategy for precise assessment of kidney and muscle health in both clinical and at-home settings.
Collapse
Affiliation(s)
- Yelan Yao
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yukun Ma
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wanying Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Tong Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| |
Collapse
|
3
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
5
|
Ravindra Babu M, Vishwas S, Gulati M, Dua K, Kumar Singh S. Harnessing the role of microneedles as sensors: current status and future perspectives. Drug Discov Today 2024; 29:104030. [PMID: 38762087 DOI: 10.1016/j.drudis.2024.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In recent years, microneedles (MNs) have been transformed to serve a wide range of applications in the biomedical field. Their role as sensors in wearable devices has provided an alternative to blood-based monitoring of health and diagnostic methods. Hence, they have become a topic of research interest for several scientists working in the biomedical field. These MNs as sensors offer the continuous monitoring of biomarkers like glucose, nucleic acids, proteins, polysaccharides and electrolyte ions, which can therefore screen for and diagnose disease conditions in humans. The present review focuses on types of MN sensors and their applications. Various clinical trials and bottlenecks of MN R&D are also discussed.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia.
| |
Collapse
|
6
|
Bedir T, Kadian S, Shukla S, Gunduz O, Narayan R. Additive manufacturing of microneedles for sensing and drug delivery. Expert Opin Drug Deliv 2024; 21:1053-1068. [PMID: 39049741 DOI: 10.1080/17425247.2024.2384696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Microneedles (MNs) are miniaturized, painless, and minimally invasive platforms that have attracted significant attention over recent decades across multiple fields, such as drug delivery, disease monitoring, disease diagnosis, and cosmetics. Several manufacturing methods have been employed to create MNs; however, these approaches come with drawbacks related to complicated, costly, and time-consuming fabrication processes. In this context, employing additive manufacturing (AM) technology for MN fabrication allows for the quick production of intricate MN prototypes with exceptional precision, providing the flexibility to customize MNs according to the desired shape and dimensions. Furthermore, AM demonstrates significant promise in the fabrication of sophisticated transdermal drug delivery systems and medical devices through the integration of MNs with various technologies. AREAS COVERED This review offers an extensive overview of various AM technologies with great potential for the fabrication of MNs. Different types of MNs and the materials utilized in their fabrication are also discussed. Recent applications of 3D-printed MNs in the fields of transdermal drug delivery and biosensing are highlighted. EXPERT OPINION This review also mentions the critical obstacles, including drug loading, biocompatibility, and regulatory requirements, which must be resolved to enable the mass-scale adoption of AM methods for MN production, and future trends.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Moonla C, Reynoso M, Casanova A, Chang AY, Djassemi O, Balaje A, Abbas A, Li Z, Mahato K, Wang J. Continuous Ketone Monitoring via Wearable Microneedle Patch Platform. ACS Sens 2024; 9:1004-1013. [PMID: 38300831 DOI: 10.1021/acssensors.3c02677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ketone bodies (KBs), especially β-hydroxybutyrate (BHB), have gained tremendous attention as potential biomarkers as their presence in bodily fluids is closely associated with health and wellness. While a variety of blood fingerstick test strips are available for self-testing of BHB, there are major needs for wearable devices capable of continuously tracking changing BHB concentrations. To address these needs, we present here the first demonstration of a wearable microneedle-based continuous ketone monitoring (CKM) in human interstitial fluid (ISF) and illustrate its ability to closely follow the intake of ketone drinks. To ensure highly stable and selective continuous detection of ISF BHB, the new enzymatic microneedle BHB sensor relies on a gold-coated platinum working electrode modified with a reagent layer containing toluidine blue O (TBO) redox mediator, β-hydroxybutyrate dehydrogenase (HBD) enzyme, a nicotinamide adenine dinucleotide (NAD+) cofactor, along with carbon nanotubes (CNTs), chitosan (Chit), and a poly(vinyl chloride) (PVC) outer protective layer. The skin-worn microneedle sensing device operates with a miniaturized electrochemical analyzer connected wirelessly to a mobile electronic device for capturing, processing, and displaying the data. Cytotoxicity and skin penetration studies indicate the absence of potential harmful effects. A pilot study involving multiple human subjects evaluated continuous BHB monitoring in human ISF, against gold standard BHB meter measurements, revealing the close correlation between the two methods. Such microneedle-based CKM offers considerable promise for dynamic BHB tracking toward the management of diabetic ketoacidosis and personal nutrition and wellness.
Collapse
Affiliation(s)
- Chochanon Moonla
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Maria Reynoso
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ana Casanova
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Omeed Djassemi
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Aishwarya Balaje
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amal Abbas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Dervisevic M, Jara Fornerod MJ, Harberts J, Zangabad PS, Voelcker NH. Wearable Microneedle Patch for Transdermal Electrochemical Monitoring of Urea in Interstitial Fluid. ACS Sens 2024; 9:932-941. [PMID: 38252743 DOI: 10.1021/acssensors.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microneedle-based wearable electrochemical biosensors are the new frontier in personalized health monitoring and disease diagnostic devices that provide an alternative tool to traditional blood-based invasive techniques. Advancements in micro- and nanofabrication technologies enabled the fabrication of microneedles using different biomaterials and morphological features with the aim of overcoming existing challenges and enhancing sensing performance. In this work, we report a microneedle array featuring conductive recessed microcavities for monitoring urea levels in the interstitial fluid of the skin. Microcavities are small pockets on the tip of each microneedle that can accommodate the sensing layer, provide protection from delamination during skin insertion or removal, and position the sensing layer in a deep layer of the skin to reach the interstitial fluid. The wearable urea patch has shown to be highly sensitive and selective in monitoring urea, with a sensitivity of 2.5 mV mM-1 and a linear range of 3 to 18 mM making it suitable for monitoring urea levels in healthy individuals and patients. Our ex vivo experiments have shown that recessed microcavities can protect the sensing layer from delamination during skin insertion and monitor changing urea levels in interstitial fluid. This biocompatible platform provides alternative solutions to the critical issue of maintaining the performance of the biosensor upon skin insertion and holds great potential for advancing transdermal sensor technology.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Maximiliano Jesus Jara Fornerod
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jann Harberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
10
|
Chen N, Ma LL, Zhang Y, Chu X, Dong J, Yan YX. Association of long-term triglyceride-glucose index patterns with the incidence of chronic kidney disease among non-diabetic population: evidence from a functional community cohort. Cardiovasc Diabetol 2024; 23:7. [PMID: 38172903 PMCID: PMC10765660 DOI: 10.1186/s12933-023-02098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index is a reliable surrogate marker of insulin resistance and previous studies have confirmed the association of TyG index with incident chronic kidney disease (CKD). However, the impact of longitudinal patterns of TyG index on CKD risk among non-diabetic population is still unknown. Therefore, this study aimed to investigate the association of longitudinal patterns of TyG index with incident CKD among non-diabetic population. METHODS A total of 5484 non-diabetic participants who underwent one health examination per year from 2015 to 2017 were included in this prospective study. TyG index variability and cumulative TyG index were calculated to assess the longitudinal patterns of TyG index. Cox proportional hazard models were performed to estimate the association of TyG index variability or cumulative TyG index with incident CKD. RESULTS During a median of 3.82 years follow-up, 879 participants developed CKD. Compared with participants in the lowest quartile, the hazard ratio (HR) and 95% confidence interval (CI) of incident CKD were 1.772 (95% CI: 1.453, 2.162) for the highest TyG index variability quartile and 2.091 (95% CI: 1.646, 2.655) for the highest cumulative TyG index quartile in the fully adjusted models. The best discrimination and reclassification improvement were observed after adding baseline TyG, TyG index variability and cumulative TyG index to the clinical risk model for CKD. CONCLUSIONS Both TyG index variability and cumulative TyG index can independently predict incident CKD among non-diabetic population. Monitoring longitudinal patterns of TyG index may assist with prediction and prevention of incident CKD.
Collapse
Affiliation(s)
- Ning Chen
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xi Chu
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
11
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|