1
|
Lin X, Liu C, Lei Q, Nan X, Zhu Y, Liao J, Du Z, Ye C, Xiong Y, Yang M, Fang X, Luo Y, Huang Q. A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136845. [PMID: 39689564 DOI: 10.1016/j.jhazmat.2024.136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu2.5 (benzotriazole-5-COO)1.5 (benzotriazole-5-COOH)0.5 (μ-Cl)0.5 (μ3-OH)-(H2O)]·3 H2O nanocomposite (GQDs/Cu-MOF) was constructed for S. aureus detection. The GQDs enhanced the sensitivity of the electrochemical aptasensor due to their excellent conductivity and provided stability through their abundant carboxyl groups. The Cu-MOF, possessing electrical activity, not only enhanced the performance of the electrochemical aptasensor but also served as a signal label. The single-stranded DNA1 (S1) was immobilized on the surface of a GQDs/Cu-MOF/screen-printed carbon electrode (S1/GQDs/Cu-MOF/SPCE) as the sensing interface. Subsequently, the S1/GQDs/Cu-MOF/SPCE was hybridized with the probe DNA-ferrocene (S2-Fc), resulting in the generation of electrochemical signals from Cu-MOF (ICu-MOF) and S2-ferrocene (IS2-FC) within the system. However, the electron transfer performance of DNA at the sensing interface was compromised, leading to a reduction in the ICu-MOF. When S. aureus was present in the system, S2-Fc reacted with it and detached from the sensing surface, resulting in a gradual decrease in IS2-FC and an increase in ICu-MOF. Then a ratiometric electrochemical aptasensor was established for S. aureus detection with remarkable sensitivity (0.97 CFU·mL-1), excellent stability, and a broad linear range. Furthermore, the aptasensor was successfully applied to detect S. aureus in tap water, milk, Lonicera japonica, urine, and Zhangjiang River. Additionally, this aptasensor design can be adapted for the detection of other foodborne pathogens, which indicates that the design scheme of the aptasensor has good universality.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenghao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Qiaowen Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xinru Nan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yunxiao Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Jing Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Zhizhi Du
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenyi Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yixian Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaojun Fang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
2
|
Yang L, He R, Chai J, Qi X, Xue Q, Bi X, Yu J, Sun Z, Xia L, Wang K, Kapuria N, Li J, Ostovari Moghaddam A, Cabot A. Synthesis Strategies for High Entropy Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412337. [PMID: 39473325 DOI: 10.1002/adma.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Indexed: 01/11/2025]
Abstract
Nanoparticles (NPs) of high entropy materials (HEMs) have attracted significant attention due to their versatility and wide range of applications. HEM NPs can be synthesized by fragmenting bulk HEMs or disintegrating and recrystallizing them. Alternatively, directly producing HEMs in NP form from atomic/ionic/molecular precursors presents a significant challenge. A widely adopted strategy involves thermodynamically driving HEM NP formation by leveraging the entropic contribution but incorporating strategies to limit NP growth at the elevated temperatures used for maximizing entropy. A second approach is to kinetically drive HEM NP formation by promoting rapid reactions of homogeneous reactant mixtures or using highly diluted precursor dissolutions. Additionally, experimental evidence suggests that enthalpy plays a significant role in driving HEM NP formation processes at moderate temperatures, with the high energy cost of generating additional surfaces and interfaces at the nanoscale stabilizing the HEM phase. This review critically assesses the various synthesis strategies developed for HEM NP preparation, highlighting key illustrative examples and offering insights into the underlying formation mechanisms. Such insights are critical for fine-tuning experimental conditions to achieve specific outcomes, ultimately enabling the effective synthesis of optimized generations of these advanced materials for both current and emerging applications across various scientific and technological fields.
Collapse
Affiliation(s)
- Linlin Yang
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Ren He
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Jiali Chai
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaoyu Bi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, 08193, Spain
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Kaiwen Wang
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Nilotpal Kapuria
- Indiana University, 800 E. Kirkwood, Bloomington, IN, 47405-7102, USA
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Ahmad Ostovari Moghaddam
- HSE University, Moscow, 101000, Russia
- Department of Materials Science, Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk, 454080, Russia
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Catalonia, Spain
| |
Collapse
|
3
|
Chang L, Jing H, Liu C, Qiu C, Ling X. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406521. [PMID: 39248345 PMCID: PMC11558137 DOI: 10.1002/advs.202406521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Indexed: 09/10/2024]
Abstract
With their unique structural characteristics, customizable chemical composition, and adjustable functional characteristics, high-entropy materials (HEMs) have triggered a wide range of interdisciplinary research, especially in the biomedical field. In this paper, the basic concept, core properties, and preparation methods of HEMs are first summarized, and then the application and development of HEMs in the field of biomedical are briefly described. Subsequently, based on the diverse and comprehensive properties of HEMs and a few reported cases, the possible application scenarios of HEMs in biological fields such as biosensors, antibacterial materials, therapeutics, bioimaging, and tissue engineering are prospectively predicted and discussed. Finally, their potential advantages and major challenges is summarized, which may provide useful guidance and principles for researchers to develop and optimize novel HEMs.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| | - Chao Liu
- Department of Nuclear MedicineYunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical UniversityKunming650000China
| | - Chuantian Qiu
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| |
Collapse
|
4
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
5
|
Thanh NN, Chotpantarat S, Ngu NH, Thunyawatcharakul P, Kaewdum N. Integrating machine learning models with cross-validation and bootstrapping for evaluating groundwater quality in Kanchanaburi province, Thailand. ENVIRONMENTAL RESEARCH 2024; 252:118952. [PMID: 38636644 DOI: 10.1016/j.envres.2024.118952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exploring the potential of new models for mapping groundwater quality presents a major challenge in water resource management, particularly in Kanchanaburi Province, Thailand, where groundwater faces contamination risks. This study aimed to explore the applicability of random forest (RF) and artificial neural networks (ANN) models to predict groundwater quality. Particularly, these two models were integrated into cross-validation (CV) and bootstrapping (B) techniques to build predictive models, including RF-CV, RF-B, ANN-CV, and ANN-B. Entropy groundwater quality index (EWQI) was converted to normalized EWQI which was then classified into five levels from very poor to very good. A total of twelve physicochemical parameters from 180 groundwater wells, including potassium, sodium, calcium, magnesium, chloride, sulfate, bicarbonate, nitrate, pH, electrical conductivity, total dissolved solids, and total hardness, were investigated to decipher groundwater quality in the eastern part of Kanchanaburi Province, Thailand. Our results indicated that groundwater quality in the study area was primarily polluted by calcium, magnesium, and bicarbonate and that the RF-CV model (RMSE = 0.06, R2 = 0.87, MAE = 0.04) outperformed the RF-B (RMSE = 0.07, R2 = 0.80, MAE = 0.04), ANN-CV (RMSE = 0.09, R2 = 0.70, MAE = 0.06), and ANN-B (RMSE = 0.10, R2 = 0.67, MAE = 0.06). Our findings highlight the superiority of the RF models over the ANN models based on the CV and B techniques. In addition, the role of groundwater parameters to the normalized EWQI in various machine learning models was found. The groundwater quality map created by the RF-CV model can be applied to orient groundwater use.
Collapse
Affiliation(s)
- Nguyen Ngoc Thanh
- University of Agriculture and Forestry, Hue University, 102 Phung Hung Str, Hue City, Thua Thien Hue, 53000, Viet Nam
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Nguyen Huu Ngu
- University of Agriculture and Forestry, Hue University, 102 Phung Hung Str, Hue City, Thua Thien Hue, 53000, Viet Nam
| | - Pongsathorn Thunyawatcharakul
- International Postgraduate Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narongsak Kaewdum
- Geoscience Program, Mahidol University Kanchanaburi Campus, Kanchanaburi, 71150, Thailand
| |
Collapse
|
6
|
Tang C, Lv CL, Chen P, Wang AJ, Feng JJ, Yun Cheang T, Xia H. Dendritic quinary PtRhMoCoFe high-entropy alloy as a robust immunosensing nanoplatform for ultrasensitive detection of biomarker. Bioelectrochemistry 2024; 157:108639. [PMID: 38199185 DOI: 10.1016/j.bioelechem.2024.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Recently, high-entropy alloys have superior physicochemical properties as compared to conventional alloys for their glamorous "cocktail effect". Nevertheless, they are scarcely applied to electrochemical immunoassays until now. Herein, uniform PtRhMoCoFe high-entropy alloyed nanodendrites (HEANDs) were synthesized by a wet-chemical co-reduction method, where glucose and oleylamine behaved as the co-reducing agents. Then, a series of characterizations were conducted to illustrate the synergistic effect among multiple metals and fascinating structural characteristics of PtRhMoCoFe HEANDs. The obtained high-entropy alloy was adopted to build a electrochemical label-free biosensor for ultrasensitive bioassay of biomarker cTnI. In the optimized analytical system, the resultant sensor exhibited a dynamic linear range of 0.0001-200 ng mL-1 and a low detection limit of 0.0095 pg mL-1 (S/N = 3). Eventually, this sensing platform was further explored in serum samples with satisfied recovery (102.0 %). This research renders some constructive insights for synthesis of high-entropy alloys and their expanded applications in bioassays and bio-devices.
Collapse
Affiliation(s)
- Chang Tang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chun-Lin Lv
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pengfei Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tuck Yun Cheang
- Department of Breast Care Centre, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Haoming Xia
- Department of Breast Surgery, Guangzhou Medical University Affiliated Cancer Hospital, No. 78 Hengzhigang Road, Guangzhou 510095, China.
| |
Collapse
|
7
|
Huang X, Lu L, Lin Q, Wei Q, Tang D. Self-assembled p-n Ag 2O@Bi 2O 2S nanoflower heterojunctions for sensitive photoelectrochemical immunoassay. Biosens Bioelectron 2023; 239:115608. [PMID: 37603986 DOI: 10.1016/j.bios.2023.115608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
A new photoelectrochemical immunoassay based on self-assembled p-n Ag2O@Bi2O2S nanoflower heterojunction was designed and developed for quantitative monitoring of prostate-specific antigen (PSA) in biological fluids. Primarily, self-assembled p-n Ag2O@Bi2O2S nanoflower heterojunctions were served as the photoactive materials and coated onto the surface of electrodes. Subsequently, the glucose oxidase (GOx) was bound to the detection antibody (mAb2) labeled gold nanoparticles (Au NPs) and then were employed to accomplish a sandwich-like immunoreaction to generate H2O2 on a microplate incubated with monoclonal anti-PSA antibodies. In the presence of PSA, the product (H2O2) was catalyzed by the substrate, which was used as an electron sacrificial agent to improve signal conversion and capture of photogenerated electrons. Under optimum conditions, a wide linear range of 0.01-50 ng mL-1 and a low detection limit of 5.3 pg mL-1 were accomplished with the sensor, exhibiting an excellent photocurrent response. Moreover, the proposed sensor revealed satisfactory reproducibility, high selectivity, and acceptable accuracy for the real sample testing. Importantly, our work provides a novel strategy for high sensitivity detection of disease-associated biomarkers for the early diagnosis of cancers.
Collapse
Affiliation(s)
- Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qiaohua Wei
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|