1
|
Wu J, Wang C, Zhang R, Du P, Wang Y, Wu P, Chen X, Huang Y, Jia Y, Shen J. SIL-IS LC-ESI-MS/MS method for simultaneous quick detection of amoxicillin and clavulanic acid in human plasma: Development, validation and its application to a pharmacokinetics study. Biomed Chromatogr 2024; 38:e5964. [PMID: 39252549 DOI: 10.1002/bmc.5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 09/11/2024]
Abstract
A liquid chromatography electrospray ionization tandem mass spectrometry method with amoxicillin-d4 as the stable isotope-labeled internal standard for simultaneous quick detection of amoxicillin and clavulanic acid in human plasma was developed and validated. Chromatographic separations were performed on a Hedera ODS-2 column (2.1 × 150 mm, 5 μm). The mobile phases for gradient elution were aqueous solution containing 0.2% acetic acid (AA) (mobile phase A) together with organic phase solution (acetonitrile and methanol mixed solution, mobile phase B). Mass spectrometry was performed using negative electrospray ionization in multiple reaction monitoring mode. The target fragment ion pairs of amoxicillin, clavulanic acid and amoxicillin-d4 were m/z 364.1 → 223.1, 198.1 → 135.9 and 368.1 → 227.1, respectively. The linear ranges of this method were 40-5,000 ng/ml for amoxicillin and 30-2,500 ng/ml for clavulanic acid, with coefficient of determination > 0.9900. This method validation included selectivity, standard curve, lower limit of quantitation, accuracy, precision, recovery, matrix effect (hemolytic matrix and hyperlipidemic matrix), carryover, stability, dilution reliability and incurred sample reanalysis study. A successful application of this method was realized in a pharmacokinetic study after administration of amoxicillin-clavulanic acid potassium granules.
Collapse
Affiliation(s)
- Jianbang Wu
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Changmao Wang
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
- The People's Hospital of Lezhi, Ziyang, Sichuan, People's Republic of China
| | - Rong Zhang
- Hainan Simcere Pharmaceutical Co., Ltd., People's Republic of China
| | - Pengfei Du
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yaqin Wang
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
| | - Ping Wu
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
| | - Xinyan Chen
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yunzhe Huang
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yuanwei Jia
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
| | - Jie Shen
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of WannanMedical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
2
|
Giraldi V, Magagnano G, Giacomini D, Cozzi PG, Gualandi A. Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams. Beilstein J Org Chem 2024; 20:2461-2468. [PMID: 39376491 PMCID: PMC11457124 DOI: 10.3762/bjoc.20.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The direct nucleophilic addition of amides to unfunctionalized alkenes via photoredox catalysis represents a facile approach towards functionalized alkylamides. Unfortunately, the scarce nucleophilicity of amides and competitive side reactions limit the utility of this approach. Herein, we report an intramolecular photoredox cyclization of alkenes with β-lactams in the presence of an acridinium photocatalyst. The approach uses an intramolecular nucleophilic addition of the β-lactam nitrogen atom to the radical cation photogenerated in the linked alkene moiety, followed by hydrogen transfer from the hydrogen atom transfer (HAT) catalyst. This process was used to successfully prepare 2-alkylated clavam derivatives.
Collapse
Affiliation(s)
- Valentina Giraldi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Giandomenico Magagnano
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
3
|
Kamalpersad K, Luna G, Sunderland B, Czarniak P. An Evaluation of Amoxicillin/Clavulanate Stability in Aqueous Systems, Including Its Suitability for Outpatient Parenteral Antimicrobial Therapy (OPAT). Drug Des Devel Ther 2024; 18:4291-4301. [PMID: 39350948 PMCID: PMC11440154 DOI: 10.2147/dddt.s474850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose Amoxicillin/clavulanate antibiotic combination is suitable for treating a range of infections, including some suited for Outpatient Parenteral Antimicrobial Therapy (OPAT). The aim of the study was to evaluate shelf-life values of amoxicillin at clinical concentrations in the presence of clavulanate for use in OPAT. Methods A stability-indicating HPLC assay was developed and validated. Kinetic studies were performed at 1 mg/mL and 15 mg/mL amoxicillin at 40-60 °C. Studies in elastomeric infusers included the pH lowered from 8.73 to 6.52 for 1 mg/mL; 8.85 to 7.69 for 7.5 mg/mL and 8.68 to 8.40 for 15 mg/mL amoxicillin plus clavulanate and stored at 2.9 °C. Results Amoxicillin and clavulanate eluted at 5.2 and 3.0 minutes, respectively, with linear concentration relationships. Forced degradation retained base-line separation of each component in the presence of degradation products. Amoxicillin 1 mg/mL had a shelf-life of 4.85 hours at pH 6.53 and 40 °C which on extrapolation to 25 °C was 22.8 h. Clavulanate was 1.38 h at 40 °C and 4.0 h at 25 °C. Amoxicillin 15 mg/mL at pH 8.34 gave a shelf-life of 0.11 h at 40 °C and clavulanate 0.41 h. In elastomeric infusers, amoxicillin 1 mg/mL, with lowering pH from 8.73 to 6.52, improved the shelf-life at 2.9 °C from 72 to >263.8 h and similarly for clavulanate. At 7.5 mg/mL amoxicillin, lowering pH from 8.85 to 7.69 improved the shelf-life from 4.2 to 51.8 h and clavulanate from 4.2 to 48.0 h. At 15 mg/mL amoxicillin, the shelf-life values at pH 8.68 or 8.40 were 3.8 h and 1.6 h and similarly for clavulanate. Conclusion Amoxicillin and clavulanate showed adequate stability at 2.9 °C for OPAT storage at 1 mg/mL and possibly 7.5 mg/mL, but not 15 mg/mL. Low shelf-life values at 25 °C also limit administration times.
Collapse
Affiliation(s)
- Kamrin Kamalpersad
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Giuseppe Luna
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Bruce Sunderland
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Petra Czarniak
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
4
|
Li FR, Wang Q, Pan X, Xu HM, Dong LB. Discovery, Structure, and Engineering of a cis-Geranylfarnesyl Diphosphate Synthase. Angew Chem Int Ed Engl 2024; 63:e202401669. [PMID: 38651244 DOI: 10.1002/anie.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
cis-Prenyltransferases (cis-PTs) catalyze the sequential head-to-tail condensation of isopentenyl diphosphate (IPP) to allylic diphosphates, producing mixed E-Z prenyl diphosphates of varying lengths; however, the specific enzymes synthesizing cis-C25 prenyl diphosphates have not been identified. Herein, we present the discovery and characterization of a cis-geranylfarnesyl diphosphate synthase (ScGFPPS) from Streptomyces clavuligerus. This enzyme demonstrates high catalytic proficiency in generating six distinct cis-polyisoprenoids, including three C25 and three C20 variants. We determined the crystal structure of ScGFPPS. Additionally, we unveil the crystal structure of nerylneryl diphosphate synthase (NNPS), known for synthesizing an all-cis-C20 polyisoprenoid. Comparative structural analysis of ScGFPPS and NNPS has identified key differences that influence product specificity. Through site-directed mutagenesis, we have identified eight single mutations that significantly refine the selectivity of ScGFPPS for cis-polyisoprenoids. Our findings not only expand the functional spectrum of cis-PTs but also provide a structural comparison strategy in cis-PTs engineering.
Collapse
Affiliation(s)
- Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingling Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
5
|
Wang H, Yang Y, Wang S, Badawy S, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release 2024; 369:25-38. [PMID: 38508527 DOI: 10.1016/j.jconrel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The resistance of multidrug-resistant bacteria to existing antibiotics forces the continued development of new antibiotics and antibacterial agents, but the high costs and long timeframe involved in the development of new agents renders the hope that existing antibiotics may again play a part. The "antibiotic adjuvant" is an indirect antibacterial strategy, but its vague concept has, in the past, limited the development speed of related drugs. In this review article, we put forward an accurate concept of a "non-self-antimicrobial sensitisers (NSAS)", to distinguish it from an "antibiotic adjuvant", and then discuss several scientific methods to restore bacterial sensitivity to antibiotics, and the sources and action mechanism of existing NSAS, in order to guide the development and further research of NSAS.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
6
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
7
|
Saini R, Kumari S, Singh A, Mishra A. From nature to cancer therapy: Evaluating the Streptomyces clavuligerus secondary metabolites for potential protein kinase inhibitors. J Cell Biochem 2024; 125:59-78. [PMID: 38047468 DOI: 10.1002/jcb.30501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The study aimed to evaluate the antioxidant, protein kinase inhibitory (PKIs) potential, cytotoxicity activity of Streptomyces clavuligerus extract. DPPH assay revealed a robust free radical scavenging capacity (IC50 28.90 ± 0.24 µg/mL) of organic extract with a maximum inhibition percentage of 61 ± 1.04%. PKIs assay revealed the formation of a whitish bald zone by S. clavuligerus extracts which indicates the presence of PKIs. The cytotoxicity activity of organic fraction of extract through Sulforhodamine B assay on MCF-7, Hop-62, SiHa, and PC-3 cell lines demonstrated the lowest GI50 value against the MCF-7 cell line followed by the PC-3 cell line, showing potent growth inhibitory potential against human breast cancer and human prostate cancer cell line. HR-LCMS analysis identified multiple secondary metabolites from the organic and aqueous extracts of S. clavuligerus when incubated at 30°C under 200 rpm for 3 days. All the secondary metabolites were elucidated for their potential to inhibit RTKs by molecular docking, molecular dynamic simulation, MM/GBSA calculations, and free energy approach. It revealed the superior inhibitory potential of epirubicin (Epi) and dodecaprenyl phosphate-galacturonic acid (DPGA) against fibroblast growth factors receptor (FGFR). Epi also exhibited excellent inhibitory activity against the platelet-derived growth factor receptor (PDGFR), while DPGA effectively inhibited the vascular endothelial growth factor receptor. Additionally, the presence Epi in S. clavuligerus extract was validated through the HPLC technique. Thus, our findings highlight a superior inhibitory potential of Epi against FGFR and PDGFR RTKs than the FDA-approved drug.
Collapse
Affiliation(s)
- Ravi Saini
- Biomolecular Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Sonali Kumari
- Biomolecular Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abha Mishra
- Biomolecular Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Reichard JF, Phelps SE, Lehnhardt KR, Young M, Easter BD. The effect of long-term spaceflight on drug potency and the risk of medication failure. NPJ Microgravity 2023; 9:35. [PMID: 37147378 PMCID: PMC10163248 DOI: 10.1038/s41526-023-00271-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
Pharmaceuticals selected for exploration space missions must remain stable and effective throughout mission timeframes. Although there have been six spaceflight drug stability studies, there has not been a comprehensive analytical analysis of these data. We sought to use these studies to quantify the rate of spaceflight drug degradation and the time-dependent probability of drug failure resulting from the loss of active pharmaceutical ingredient (API). Additionally, existing spaceflight drug stability studies were reviewed to identify research gaps to be addressed prior to exploration missions. Data were extracted from the six spaceflight studies to quantify API loss for 36 drug products with long-duration exposure to spaceflight. Medications stored for up to 2.4 years in low Earth orbit (LEO) exhibit a small increase in the rate of API loss with a corresponding increase in risk of product failure. Overall, the potency for all spaceflight-exposed medications remains within 10% of terrestrial lot-matched control with a ~1.5 increase in degradation rate. All existing studies of spaceflight drug stability have focused primarily on repackaged solid oral medications, which is important because non-protective repackaging is a well-established factor contributing to loss of drug potency. The factor most detrimental to drug stability appears to be nonprotective drug repackaging, based on premature failure of drug products in the terrestrial control group. The result of this study supports a critical need to evaluate the effects of current repackaging processes on drug shelf life, and to develop and validate suitable protective repackaging strategies that help assure the stability of medications throughout the full duration of exploration space missions.
Collapse
Affiliation(s)
- J F Reichard
- NASA Johnson Space Center, Houston, TX, US.
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - S E Phelps
- KBR, Houston, TX, USA
- Department of Public Health & Preventive Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Emergency Medicine & Neuroscience, Emory University, Atlanta, GA, USA
| | - K R Lehnhardt
- NASA Johnson Space Center, Houston, TX, US
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - M Young
- NASA Johnson Space Center, Houston, TX, US
| | - B D Easter
- NASA Johnson Space Center, Houston, TX, US
- Department of Emergency Medicine, University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
9
|
Fu J, Xie X, Zhang S, Kang N, Zong G, Zhang P, Cao G. Rich Organic Nitrogen Impacts Clavulanic Acid Biosynthesis through the Arginine Metabolic Pathway in Streptomyces clavuligerus F613-1. Microbiol Spectr 2023; 11:e0201722. [PMID: 36515504 PMCID: PMC9927107 DOI: 10.1128/spectrum.02017-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clavulanic acid (CA) is the preferred clinical drug for the treatment of infections by β-lactam antibiotic-resistant bacteria. CA is produced by Streptomyces clavuligerus, and although there have been many reports on the effects of carbon and nitrogen sources on CA production, the mechanisms involved remain unclear. In this study, we found that CA accumulation in S. clavuligerus F613-1 was increased significantly in MH medium, which is rich in organic nitrogen, compared with that in ML medium, which contains half the amount of organic nitrogen present in MH medium. Transcriptome analysis revealed that genes involved in CA biosynthesis, such as ceas1, ceas2, bls1, bls2, cas2, pah2, gcaS, and cad, and arginine biosynthesis, such as argB, argC, argD, argG, argH, argJ, and argR, were upregulated under rich organic nitrogen. Metabolome data revealed notable differences between cultures of F613-1 grown in MH and ML media with regard to levels of key intracellular metabolites, most of which are involved in arginine metabolic pathways, including arginine, glutamine, and glutamic acid. Additionally, supplementation of ML medium with arginine, glutamine, or glutamic acid resulted in increased CA production by S. clavuligerus F613-1. Our results indicate that rich organic nitrogen mainly affects CA biosynthesis by increasing the levels of amino acids associated with the arginine metabolic pathway and activating the expression of the CA biosynthetic gene cluster. These findings provide important insights for improving medium optimization and engineering of S. clavuligerus F613-1 for high-yield production of CA. IMPORTANCE The bacterium Streptomyces clavuligerus is used for the industrial production of the broad-spectrum β-lactamase inhibitor clavulanic acid (CA). However, much remains unknown about the factors which affect CA yields. We investigated the effects of different levels of organic nitrogen on CA production. Our analyses indicate that higher organic nitrogen levels were associated with increased CA yields and increased levels of arginine biosynthesis. Further analyses supported the relationship between arginine metabolism and CA production and demonstrated that increasing the levels of arginine or associated amino acids could boost CA yields. These findings suggest approaches for improving the production of this clinically important antibiotic.
Collapse
Affiliation(s)
- Jiafang Fu
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xinru Xie
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Shaowei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ni Kang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Gongli Zong
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Lim S, Yoo YM, Kim KH. No more tears from surgical site infections in interventional pain management. Korean J Pain 2023; 36:11-50. [PMID: 36581597 PMCID: PMC9812697 DOI: 10.3344/kjp.22397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
As the field of interventional pain management (IPM) grows, the risk of surgical site infections (SSIs) is increasing. SSI is defined as an infection of the incision or organ/space that occurs within one month after operation or three months after implantation. It is also common to find patients with suspected infection in an outpatient clinic. The most frequent IPM procedures are performed in the spine. Even though primary pyogenic spondylodiscitis via hematogenous spread is the most common type among spinal infections, secondary spinal infections from direct inoculation should be monitored after IPM procedures. Various preventive guidelines for SSI have been published. Cefazolin, followed by vancomycin, is the most commonly used surgical antibiotic prophylaxis in IPM. Diagnosis of SSI is confirmed by purulent discharge, isolation of causative organisms, pain/tenderness, swelling, redness, or heat, or diagnosis by a surgeon or attending physician. Inflammatory markers include traditional (C-reactive protein, erythrocyte sedimentation rate, and white blood cell count) and novel (procalcitonin, serum amyloid A, and presepsin) markers. Empirical antibiotic therapy is defined as the initial administration of antibiotics within at least 24 hours prior to the results of blood culture and antibiotic susceptibility testing. Definitive antibiotic therapy is initiated based on the above culture and testing. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria infections appears to be superior to monotherapy in mortality with the risk of increasing antibiotic resistance rates. The never-ending war between bacterial resistance and new antibiotics is continuing. This article reviews prevention, diagnosis, and treatment of infection in pain medicine.
Collapse
Affiliation(s)
- Seungjin Lim
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yeong-Min Yoo
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung-Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea,Correspondence: Kyung-Hoon Kim Pain Clinic, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea, Tel: +82-55-360-1422, Fax: +82-55-360-2149, E-mail:
| |
Collapse
|
11
|
Wei M, Wu J, Sun H, Zhang B, Hu X, Wang Q, Li B, Xu L, Ma T, Gao J, Li F, Ling D. An Enzymatic Antibiotic Adjuvant Modulates the Infectious Microenvironment to Overcome Antimicrobial Resistance of Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205471. [PMID: 36399641 DOI: 10.1002/smll.202205471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The emergence and evolution of antimicrobial resistance (AMR) pose a significant challenge to the current arsenal to fight infection. Antibiotic adjuvants represent an appealing tactic for tackling the AMR of pathogens, however, their practical applications are greatly constrained by the harsh infectious microenvironment. Herein, it is found that silver nanoclusters (Ag NCs) can possess tunable enzymatic activities to modulate infectious microenvironments. Based on this finding, an enzymatic nanoadjuvant (EnzNA) self-assembled from Ag NCs, which is inert under neutral physiological conditions but can readily disassemble into isolated Ag NCs exhibiting biofilm destructive oxidase-mimetic activity in the acidic biofilm microenvironment, is developed. Once internalized into the neutral cytoplasm of bacteria, Ag NCs switch to reveal the thiol oxidase-mimetic activity to suppress ribosomal biogenesis for AMR reversal and evolution inhibition of pathogens. Consequently, EnzNAs revitalize various existing antibiotics against methicillin-resistant Staphylococcus aureus, and potentiate the antibiotic efficacy against biofilm-mediated skin infection and lethal lung infection in mice. These findings highlight the capability of enzyme-mimetic nanomaterials to modulate the infectious microenvironment and potentiate antibiotics, providing a paradigm shift for anti-infection therapy.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahe Wu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Heng Sun
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilan Xu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Teng Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| |
Collapse
|
12
|
Mandal M, Xiao L, Pan W, Scapin G, Li G, Tang H, Yang SW, Pan J, Root Y, de Jesus RK, Yang C, Prosise W, Dayananth P, Mirza A, Therien AG, Young K, Flattery A, Garlisi C, Zhang R, Chu D, Sheth P, Chu I, Wu J, Markgraf C, Kim HY, Painter R, Mayhood TW, DiNunzio E, Wyss DF, Buevich AV, Fischmann T, Pasternak A, Dong S, Hicks JD, Villafania A, Liang L, Murgolo N, Black T, Hagmann WK, Tata J, Parmee ER, Weber AE, Su J, Tang H. Rapid Evolution of a Fragment-like Molecule to Pan-Metallo-Beta-Lactamase Inhibitors: Initial Leads toward Clinical Candidates. J Med Chem 2022; 65:16234-16251. [PMID: 36475645 DOI: 10.1021/acs.jmedchem.2c00766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the emergence and rapid spreading of NDM-1 and existence of clinically relevant VIM-1 and IMP-1, discovery of pan inhibitors targeting metallo-beta-lactamases (MBLs) became critical in our battle against bacterial infection. Concurrent with our fragment and high-throughput screenings, we performed a knowledge-based search of known metallo-beta-lactamase inhibitors (MBLIs) to identify starting points for early engagement of medicinal chemistry. A class of compounds exemplified by 11, discovered earlier as B. fragilis metallo-beta-lactamase inhibitors, was selected for in silico virtual screening. From these efforts, compound 12 was identified with activity against NDM-1 only. Initial exploration on metal binding design followed by structure-guided optimization led to the discovery of a series of compounds represented by 23 with a pan MBL inhibition profile. In in vivo studies, compound 23 in combination with imipenem (IPM) robustly lowered the bacterial burden in a murine infection model and became the lead for the invention of MBLI clinical candidates.
Collapse
Affiliation(s)
- Mihirbaran Mandal
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Li Xiao
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Weidong Pan
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Giovanna Scapin
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Guoqing Li
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Haiqun Tang
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Shu-Wei Yang
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Jianping Pan
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Yuriko Root
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | | | - Christine Yang
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Winnie Prosise
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Priya Dayananth
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Asra Mirza
- Antibacterial/antifungal, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Alex G Therien
- Antibacterial/antifungal, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Katherine Young
- Antibacterial/antifungal, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Amy Flattery
- In vivo biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Charles Garlisi
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Rumin Zhang
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Donald Chu
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Payal Sheth
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Inhou Chu
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Jin Wu
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Carrie Markgraf
- Nonclinical Drug Safety, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Hai-Young Kim
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Ronald Painter
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Todd W Mayhood
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Edward DiNunzio
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Daniel F Wyss
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Alexei V Buevich
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Thierry Fischmann
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Alexander Pasternak
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Shuzhi Dong
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Jacqueline D Hicks
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Artjohn Villafania
- In-vitro biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Lianzhu Liang
- In vivo biology, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Nicholas Murgolo
- Antibacterial/antifungal, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Todd Black
- Antibacterial/antifungal, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - William K Hagmann
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Jim Tata
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Emma R Parmee
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Ann E Weber
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Jing Su
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| | - Haifeng Tang
- Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
13
|
Zhang C, Zhao Y, Li Z, Wang W, Huang Y, Pan G, Fan K. Molecular mechanism of GylR-mediated regulation of glycerol metabolism in Streptomyces clavuligerus NRRL 3585. Front Microbiol 2022; 13:1078293. [PMID: 36504789 PMCID: PMC9732521 DOI: 10.3389/fmicb.2022.1078293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Glycerol is a readily available and low-cost simple polyol compound, which can be used as a carbon source for microorganisms to produce various value-added products. Understanding the underlying regulatory mechanism in glycerol metabolism is critical for making better use of glycerol for diverse applications. In a few reported Streptomyces strains, the glycerol utilization gene cluster (glp operon) was shown to be regulated by the IclR family transcriptional regulator GylR. However, the molecular regulatory mechanism mediated by GylR has not been fully elucidated. In this study, we first analyzed the available Actinobacteria genomes in the NCBI Genome database, and found that the glp operon-like gene clusters are conserved in Streptomyces and several other genera of Actinobacteria. By taking Streptomyces clavuligerus NRRL 3585 as a model system, we identified that GylR represses the expressions of glp operon and gylR by directly binding to their promoter regions. Both glycerol-3-phosphate and dihydroxyacetone phosphate can induce the dissociation of GylR from its binding sequences. Furthermore, we identified a minimal essential operator site (a palindromic 18-bp sequence) of GylR-like regulators in Streptomyces. Our study for the first time reported the binding sequences and effector molecules of GylR-like proteins in Streptomyces. The molecular regulatory mechanism mediated by GylR presumably exists widely in Streptomyces. Our findings would facilitate the design of glycerol utilization pathways for producing valuable products. Moreover, our study provided new basic elements for the development of glycerol-inducible regulatory tools for synthetic biology research in the future.
Collapse
Affiliation(s)
- Chaobo Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Youbao Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Keqiang Fan,
| |
Collapse
|
14
|
Zhu J, Bai Y, Chen X, Hu L, Zhang W, Liu C, Shao H, Sun J, Chen Y. Ultrasensitive detection of β-lactamase-associated drug-resistant bacteria using a novel mass-tagged probe-mediated cascaded signal amplification strategy. Chem Sci 2022; 13:12799-12807. [PMID: 36519064 PMCID: PMC9645384 DOI: 10.1039/d2sc01530g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
The emergence and spread of drug-resistant bacteria (DRB) is a global health threat. Early and accurate detection of DRB is a critical step in the treatment of DRB infection. However, traditional assays for DRB detection are time-consuming and have inferior analytical sensitivity and quantification capability. Herein, a mass-tagged probe (MP-CMSA)-mediated enzyme- and light-assisted cascaded signal amplification strategy was developed for the ultrasensitive detection of β-lactamase (BLA), an enzyme closely associated with most DRB. Each MP-CMSA probe contained multiple poly(amidoamine) (PAMAM) dendrimer molecules immobilized on a streptavidin agarose bead via a BLA-cleavable linker, and each dendrimer was modified with multiple mass tags via a photo-cleavable linker. In BLA detection, BLA could cleave the BLA-cleavable linker, leading to dendrimers shedding from the MP-CMSA probe to achieve enzyme-assisted signal amplification. Then, each dendrimer can further release mass tags under UV light to achieve light-assisted signal amplification. After this cascaded signal amplification, the released mass tags were ultimately quantified by mass spectrometry. Consequently, the sensitivity of BLA detection can be significantly enhanced by four orders of magnitude with a detection limit of 50.0 fM. Finally, this approach was applied to the blood samples from patients with DRB. This platform provides a potential strategy for the sensitive, rapid and quantitative detection of DRB infection.
Collapse
Affiliation(s)
- Jianhua Zhu
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University Nanjing 210096 China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China +86-25-83262630 +86-25-83262630
- Office of Clinical Trial Institution, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China
| | - Wenjun Zhang
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Chunyan Liu
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China +86-25-83262630 +86-25-83262630
| | - Jianguo Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing 210009 China +86-25-83271176 +86-25-83271176
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
- State Key Laboratory of Reproductive Medicine 210029 China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine Nanjing 211166 China
| |
Collapse
|
15
|
Lizana I, Pecchi G, Uribe EA, Delgado EJ. A rationale for the unlike potency of avibactam and ETX2514 against OXA-24 β-lactamase. Arch Biochem Biophys 2022; 727:109343. [PMID: 35779594 DOI: 10.1016/j.abb.2022.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
Diazabicyclooctanone inhibitors such as ETX2514 and avibactam have shown enhanced inhibitory performance to fight the antibiotic resistance developed by pathogens. However, avibactam is ineffective against Acinetobacter baumannii infections, unlike ETX2514. The molecular basis for this difference has not been tackled from a molecular approach, precluding the knowledge of relevant information. In this article, the mechanisms involved in the inhibition of OXA-24 by ETX2514 and avibactam are studied theoretically by hybrid QM/MM calculations. The results show that both inhibitors share the same inhibition mechanisms, comprising acylation a deacylation stages. The involved mechanisms include the same number of steps, transition states and intermediates; although they differ in the involved activation barriers. This difference accounts for the dissimilar inhibitory ability of both inhibitors. The molecular reason for this is the endocyclic double bond in the piperidine ring of ETX2514 increasing the ring strain and chemical reactivity on the N6 and C7 atoms, besides the methyl substituent, which enhance the hydrophobic character of the ring. Furthermore, Lys218 and the carboxylated Lys84 of ETX2514, play a crucial role in the mechanism by coordinating their protonation states in an on/off (protonated/deprotonated) manner, favoring the proton transference between the residues and the inhibitor.
Collapse
Affiliation(s)
- Ignacio Lizana
- Department of Physical Chemistry, Universidad de Concepción, Chile; Millennium Nucleus on Catalytic Processes Towards Sustainable Chemistry, Santiago, 4070386, Chile
| | - Gina Pecchi
- Department of Physical Chemistry, Universidad de Concepción, Chile; Millennium Nucleus on Catalytic Processes Towards Sustainable Chemistry, Santiago, 4070386, Chile
| | - Elena A Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eduardo J Delgado
- Department of Physical Chemistry, Universidad de Concepción, Chile; Millennium Nucleus on Catalytic Processes Towards Sustainable Chemistry, Santiago, 4070386, Chile.
| |
Collapse
|
16
|
Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022; 27:3832. [PMID: 35744953 PMCID: PMC9227086 DOI: 10.3390/molecules27123832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | | | | | | | | | | | | | | | | | | | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| |
Collapse
|
17
|
Anoush M, Pourmansouri Z, Javadi R, GhorbanPour B, Sharafi A, Mohamadpour H, jafari anarkooli I, Andalib S. Clavulanic Acid: A Novel Potential Agent in Prevention and Treatment of Scopolamine-Induced Alzheimer's Disease. ACS OMEGA 2022; 7:13861-13869. [PMID: 35559146 PMCID: PMC9088895 DOI: 10.1021/acsomega.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 05/13/2023]
Abstract
Background and Aim: Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multifaced disorder with a greater genetic contribution. The contribution of many genes such as BDNF, Sirtuin 6, and Seladin 1 has been reported in the pathogenesis of AD. Current therapies include acetylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, which are only temporarily beneficial. Therefore, it seems that more studies should be conducted to determine the exact mechanisms of drugs to deal with the diseases' multifactorial features that we face. Methods: In this study, 42 adult rats were randomly divided into 7 groups and received drugs intraperitoneally and orally according to the protocol as follows: scopolamine group, clavulanic acid group, memantine group, scopolamine + memantine group, clavulanic acid pre- and post-treatment, and normal saline group. The Morris water maze method was performed to evaluate the spatial memory of animals, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay and real-time polymerase chain reaction were performed to study neuronal cell apoptosis and gene expression, respectively. Results: Significant differences were observed in the spatial memory of rats that received clavulanic acid prophylactically compared to the Alzheimer's model on the day of the test. Moreover, the results obtained during the training showed that both memantine and clavulanic acid improved spatial memory by increasing the time of rats present in the platform position and by reducing the swimming time in the scopolamine-induced Alzheimer's group. Besides, rats that received clavulanic acid and memantine had a greater percentage of healthy cells in comparison with the scopolamine-induced Alzheimer's group; however, the results were more significant for clavulanic acid. Furthermore, the expressions of BDNF, Seladin 1, and Sirtuin 6 as neuroprotective target genes were modified after clavulanic acid and memantine administrations; similarly, the results obtained from clavulanic acid were more significant. Conclusion: The results show that the administration of clavulanic acid before and after the use of scopolamine can reduce the percentage of apoptotic cells in the hippocampus and also improve the parameters related to learning and spatial memory; however, its effect in the prophylactic state was stronger. The results obtained from memantine revealed that it has neuroprotective potency against AD; however, clavulanic acid had a greater effect. Also, with increased expression of the neuroprotective genes, clavulanic acid could be considered as an option in the upcoming preclinical and clinical research about Alzheimer's disease.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Zeinab Pourmansouri
- Department
of Pharmacology, School of Medicine, Zanjan
University of Medical Sciences, Zanjan 4515613191, Iran
| | - Rafi Javadi
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Benyamin GhorbanPour
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Ali Sharafi
- Zanjan
Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Hamed Mohamadpour
- Department
of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Iraj jafari anarkooli
- Department
of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Sina Andalib
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
- Phone: +98(241)-427-3637.
Fax: +98(241)-427-3639. E-mail: ,
| |
Collapse
|
18
|
Alfei S, Schito AM. β-Lactam Antibiotics and β-Lactamase Enzymes Inhibitors, Part 2: Our Limited Resources. Pharmaceuticals (Basel) 2022; 15:476. [PMID: 35455473 PMCID: PMC9031764 DOI: 10.3390/ph15040476] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
β-lactam antibiotics (BLAs) are crucial molecules among antibacterial drugs, but the increasing emergence of resistance to them, developed by bacteria producing β-lactamase enzymes (BLEs), is becoming one of the major warnings to the global public health. Since only a small number of novel antibiotics are in development, a current clinical approach to limit this phenomenon consists of administering proper combinations of β-lactam antibiotics (BLAs) and β-lactamase inhibitors (BLEsIs). Unfortunately, while few clinically approved BLEsIs are capable of inhibiting most class-A and -C serine β-lactamases (SBLEs) and some carbapenemases of class D, they are unable to inhibit most part of the carbapenem hydrolyzing enzymes of class D and the worrying metallo-β-lactamases (MBLEs) of class B. Particularly, MBLEs are a set of enzymes that catalyzes the hydrolysis of a broad range of BLAs by a zinc-mediated mechanism, and currently no clinically available molecule capable of inhibiting MBLEs exists. Additionally, new types of alarming "superbugs", were found to produce the New Delhi metallo-β-lactamases (NDMs) encoded by increasing variants of a plasmid-mediated gene capable of rapidly spreading among bacteria of the same species and even among different species. Particularly, NDM-1 possesses a flexible hydrolysis mechanism that inactivates all BLAs, except for aztreonam. The present review provides first an overview of existing BLAs and the most clinically relevant BLEs detected so far. Then, the BLEsIs and their most common associations with BLAs already clinically applied and those still in development are reviewed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy;
| |
Collapse
|
19
|
Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production. Pharmaceuticals (Basel) 2022; 15:ph15030384. [PMID: 35337181 PMCID: PMC8954882 DOI: 10.3390/ph15030384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.
Collapse
|
20
|
Substituted-amidine derivatives of diazabicyclooctane as prospective β-lactamase inhibitors. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Pivk Lukančič P, Drčar T, Bruccoleri R, Črnugelj M, Mrak P. Teleocidin-producing genotype of Streptomyces clavuligerus ATCC 27064. Appl Microbiol Biotechnol 2022; 106:1521-1530. [PMID: 35138454 PMCID: PMC8882083 DOI: 10.1007/s00253-022-11805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Streptomyces clavuligerus is an industrially important producer of clavulanic acid (CA), a β-lactamase inhibitor which is used together with amoxicillin in one of the most widely prescribed antibacterial medicines, the co-amoxiclav. In a mid-eighties ATCC vial of S. clavuligerus ATCC 27064 culture, we have found a new genotype, which was apparently lost from the subsequent ATCC collection stocks, and has remained obscure to the scientific community. Most importantly, this genotype harbors teleocidin (lyngbyatoxin) biosynthetic genes, which are located on an enigmatic 138 kb chromosomal region and support accumulation of significant amounts of these highly toxic, tumor-promoting secondary metabolites in cultures of S. clavuligerus. While this genomic region is completely absent from all published sequences for S. clavuligerus ATCC strain, at least one of the industrial strains for commercial production of CA, originating from ATCC 27064, retained the genetic potential for production of teleocidins. The origin of teleocidin biosynthetic cluster can now be traced back to early S. clavuligerus stocks at the ATCC. Our work provides a genome sequence and a deposited monoisolate of this genotype. Given the scale of industrial use of S. clavuligerus world-wide and toxicity of teleocidins, we also discuss the environmental and safety implications and provide a method of abolishing teleocidin production without affecting productivity of CA. Key points • Early stocks of S. clavuligerus ATCC 27064 produce toxic teleocidins • Teleocidin biosynthetic genes were found within a distinct S. clavuligerus genotype • The genotype has been passed on to some industrial clavulanic acid producer strains Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11805-5.
Collapse
Affiliation(s)
| | - Tjaša Drčar
- Novartis Technical Operations, MS&T Antiinfectives, Mengeš, Slovenia
| | | | - Martin Črnugelj
- Sandoz Development Center Slovenia, Physical Analytics Department, Ljubljana, Slovenia
| | - Peter Mrak
- Novartis Technical Operations, MS&T Antiinfectives, Mengeš, Slovenia.
| |
Collapse
|
22
|
Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. Prospects for Antibacterial Discovery and Development. J Am Chem Soc 2021; 143:21127-21142. [PMID: 34860516 PMCID: PMC8855840 DOI: 10.1021/jacs.1c10200] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rising prevalence of multidrug-resistant bacteria is an urgent health crisis that can only be countered through renewed investment in the discovery and development of antibiotics. There is no panacea for the antibacterial resistance crisis; instead, a multifaceted approach is called for. In this Perspective we make the case that, in the face of evolving clinical needs and enabling technologies, numerous validated antibacterial targets and associated lead molecules deserve a second look. At the same time, many worthy targets lack good leads despite harboring druggable active sites. Creative and inspired techniques buoy discovery efforts; while soil screening efforts frequently lead to antibiotic rediscovery, researchers have found success searching for new antibiotic leads by studying underexplored ecological niches or by leveraging the abundance of available data from genome mining efforts. The judicious use of "polypharmacology" (i.e., the ability of a drug to alter the activities of multiple targets) can also provide new opportunities, as can the continued search for inhibitors of resistance enzymes with the capacity to breathe new life into old antibiotics. We conclude by highlighting available pharmacoeconomic models for antibacterial discovery and development while making the case for new ones.
Collapse
Affiliation(s)
- Thomas M. Privalsky
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Alexander M. Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 United States
| | - Christopher T. Walsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M. Gordon
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Nathanael S. Gray
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
23
|
Abstract
The Streptomyces clavuligerus genome consists in a linear chromosome of about 6.7 Mb and four plasmids (pSCL1 to pSCL4), the latter one of 1.8 Mb. Deletion of pSCL4, results in viable mutants with high instability in the chromosome arms, which may lead to chromosome circularisation. Transcriptomic and proteomic studies comparing different mutants with the wild-type strain improved our knowledge on the biosynthesis and regulation of clavulanic acid, cephamycin C and holomycin. Additional knowledge has been obtained on the SARP-type CcaR activator and the network of connections with other regulators (Brp, AreB, AdpA, BldG, RelA) controlling ccaR expression. The transcriptional pattern of the cephamycin and clavulanic acid clusters is supported by the binding of CcaR to different promoters and confirmed that ClaR is a CcaR-dependent activator that controls the late steps of clavulanic biosynthesis. Metabolomic studies allowed the detection of new metabolites produced by S. clavuligerus such as naringenin, desferroxamines, several N-acyl tunicamycins, the terpenes carveol and cuminyl alcohol or bafilomycin J. Heterologous expression of S. clavuligerus terpene synthases resulted in the formation of no less than 15 different terpenes, although none of them was detected in S. clavuligerus culture broth. In summary, application of the Omic tools results in a better understanding of the molecular biology of S. clavuligerus, that allows the use of this strain as an industrial actinobacterial platform and helps to improve CA production.
Collapse
Affiliation(s)
- Paloma Liras
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| | - Juan F Martín
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| |
Collapse
|
24
|
Wang X, Hu C, Qin C, Dong Y, Ying G, Xiu Z, Su Z. Simultaneous solid-liquid separation and primary purification of clavulanic acid from fermentation broth of Streptomyces clavuligerus using salting-out extraction system. Eng Life Sci 2021; 21:643-652. [PMID: 34690635 PMCID: PMC8518655 DOI: 10.1002/elsc.202000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Clavulanic acid (CA) is usually used together with other β-lactam antibiotics as combination drugs to inhibit bacterial β-lactamases, which is mainly produced from the fermentation of microorganism such as Streptomyces clavuligerus. Recently, it is still a challenge for downstream processing of low concentration and unstable CA from fermentation broth with high solid content, high viscosity, and small cell size. In this study, an integrated process was developed for simultaneous solid-liquid separation and primary purification of CA from real fermentation broth of S. clavuligerus using salting-out extraction system (SOES). First, different SOESs were investigated, and a suitable SOES composed of ethanol/phosphate was chosen and further optimized using the pretreated fermentation broth. Then, the optimal system composed of 20% ethanol/15% K2HPO4 and 10% KH2PO4 w/w was used to direct separation of CA from untreated fermentation broth. The result showed that the partition coefficient (K) and recovery yield (Y) of CA from untreated fermentation broth were 29.13 and 96.8%, respectively. Simultaneously, the removal rates of the cells and proteins were 99.8% and 63.3%, respectively. Compared with the traditional method of membrane filtration or liquid-liquid extraction system, this developed SOES showed the advantages of simple operation, shorter operation time, lower process cost and higher recovery yield of CA. These results demonstrated that the developed SOES could be used as an attractive alternative for the downstream processing of CA from real fermentation broth.
Collapse
Affiliation(s)
- Xu‐Dong Wang
- School of BioengineeringDalian University of TechnologyDalianP. R. China
- College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouP. R. China
| | - Chun‐Yan Hu
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Chao Qin
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Yue‐Sheng Dong
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Guo‐Qing Ying
- College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouP. R. China
| | - Zhi‐Long Xiu
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Zhi‐Guo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
25
|
Sun J, He L, Gao Y, Zhai L, Ji J, Liu Y, Ji J, Ma X, Mu Y, Tang D, Yang H, Iqbal Z, Yang Z. Synthesis of substituted-amidine derivatives of avibactam and synergistic antibacterial activity with meropenem. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Effects of Different β-Lactam Antibiotics on Indirect Tomato ( Solanum lycopersicum L.) Shoot Organogenesis and Agrobacterium tumefaciens Growth Inhibition In Vitro. Antibiotics (Basel) 2021; 10:antibiotics10060660. [PMID: 34205842 PMCID: PMC8229254 DOI: 10.3390/antibiotics10060660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
A β-lactams that act by inhibiting the bacterial cell wall biosynthesis are one of the most common classes of antibiotics applied to suppress the growth of latent bacterial infection associated with the plant tissue culture, as well as in the Agrobacterium-mediated transformation techniques. Plant sensitivity to antibiotics usually is species-, genotype-, or even tissue-specific and mainly depends on concentrations, growth conditions, and culture system. In the presented article, we estimated a comparative effect of four β-lactam antibiotics (Claforan®, timentin, amoxicillin, and Amoxiclav®) at different concentrations in an agar-solidified Murashige and Skoog (MS) culture medium supplemented with 5 mg L-1 6-benzylaminopurine (6-BA) and 0.1 mg L-1 indole-3-acetic acid (IAA) on in vitro callus induction and shoot organogenesis from hypocotyl and cotyledon explants of two tomato cultivars (Rekordsmen, Moryana). The role of clavulanic acid in combination with amoxicillin (Amoxiclav®) in the shoot organogenesis frequency and number of shoots per explant has been demonstrated. Additionally, the growth inhibition of Agrobacterium tumefaciens AGL0 strain according to agar disk-diffusion assay was studied. As a result, both stimulatory (timentin, amoxicillin, and Amoxiclav®) and inhibitory (Claforan®) effects of β-lactam antibiotics on in vitro morphogenetic responses of tomato were noted. It was found that clavulanic acid, which is part of the commercial antibiotic Amoxiclav®, significantly increased the shoot regeneration frequency from cotyledon and hypocotyl explants of Rekordsmen tomato cultivar. Possible reasons for the stimulating effect of clavulanic acid on the induction of shoot organogenesis are discussed. According to agar disk-diffusion assay, the maximum diameter of growth inhibition zones (43.9 mm) was identified using 200 mg L-1 timentin. The in vitro antibacterial activity of tested β-lactam antibiotics was arranged in the following order: timentin > Claforan® > amoxicillin ≥ Amoxiclav®. Thus, to suppress the growth of internal and latent bacterial infection of tomato plant tissue culture, as well as for transformation of Moryana and Rekordsmen cultivars by A. tumefaciens strain AGL0, we recommend adding of 100-200 mg L-1 timentin or 400-800 mg L-1 Amoxiclav® to the shoot induction medium.
Collapse
|
27
|
Ünsaldı E, Kurt-Kızıldoğan A, Özcan S, Becher D, Voigt B, Aktaş C, Özcengiz G. Proteomic analysis of a hom-disrupted, cephamycin C overproducing Streptomyces clavuligerus. Protein Pept Lett 2021; 28:205-220. [PMID: 32707026 DOI: 10.2174/0929866527666200723163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Servet Özcan
- Department of Biology, Erciyes University, Kayseri 38280, Turkey
| | - Dörte Becher
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Birgit Voigt
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Caner Aktaş
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
28
|
Iqbal Z, Zhai L, Gao Y, Tang D, Ma X, Ji J, Sun J, Ji J, Liu Y, Jiang R, Mu Y, He L, Yang H, Yang Z. β-Lactamase inhibition profile of new amidine-substituted diazabicyclooctanes. Beilstein J Org Chem 2021; 17:711-718. [PMID: 33777246 PMCID: PMC7961884 DOI: 10.3762/bjoc.17.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 12/05/2022] Open
Abstract
The diazabicyclooctane (DBO) scaffold is the backbone of non-β-lactam-based second generation β-lactamase inhibitors. As part of our efforts, we have synthesized a series of DBO derivatives A1–23 containing amidine substituents at the C2 position of the bicyclic ring. These compounds, alone and in combination with meropenem, were tested against ten bacterial strains for their antibacterial activity in vitro. All compounds did not show antibacterial activity when tested alone (MIC >64 mg/L), however, they exhibited a moderate inhibition activity in the presence of meropenem by lowering its MIC values. The compound A12 proved most potent among the other counterparts against all bacterial species with MIC from <0.125 mg/L to 2 mg/L, and is comparable to avibactam against both E. coli strains with a MIC value of <0.125 mg/L.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Lijuan Zhai
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yuanyu Gao
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Dong Tang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Xueqin Ma
- College of Pharmacy, Ningxia Medical University, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, P.R. China
| | - Jinbo Ji
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Jingwen Ji
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yuanbai Liu
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Rui Jiang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yangxiu Mu
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Lili He
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Haikang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| |
Collapse
|
29
|
Simultaneous Determination of Cefixime, Cefdinir and Clavulanic Acid by High Performance Liquid Chromatography. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02341-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
López-Agudelo VA, Gómez-Ríos D, Ramirez-Malule H. Clavulanic Acid Production by Streptomyces clavuligerus: Insights from Systems Biology, Strain Engineering, and Downstream Processing. Antibiotics (Basel) 2021; 10:84. [PMID: 33477401 PMCID: PMC7830376 DOI: 10.3390/antibiotics10010084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Clavulanic acid (CA) is an irreversible β-lactamase enzyme inhibitor with a weak antibacterial activity produced by Streptomyces clavuligerus (S. clavuligerus). CA is typically co-formulated with broad-spectrum β‑lactam antibiotics such as amoxicillin, conferring them high potential to treat diseases caused by bacteria that possess β‑lactam resistance. The clinical importance of CA and the complexity of the production process motivate improvements from an interdisciplinary standpoint by integrating metabolic engineering strategies and knowledge on metabolic and regulatory events through systems biology and multi-omics approaches. In the large-scale bioprocessing, optimization of culture conditions, bioreactor design, agitation regime, as well as advances in CA separation and purification are required to improve the cost structure associated to CA production. This review presents the recent insights in CA production by S. clavuligerus, emphasizing on systems biology approaches, strain engineering, and downstream processing.
Collapse
Affiliation(s)
| | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | | |
Collapse
|
31
|
Poyade M, Eaglesham C, Trench J, Reid M. A Transferable Psychological Evaluation of Virtual Reality Applied to Safety Training in Chemical Manufacturing. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.0c00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthieu Poyade
- School of Simulation and Visualisation (SimVis), Glasgow School of Art, Pacific Quay, Glasgow G51 1EA, United Kingdom
| | - Claire Eaglesham
- School of Simulation and Visualisation (SimVis), Glasgow School of Art, Pacific Quay, Glasgow G51 1EA, United Kingdom
| | - Jordan Trench
- School of Simulation and Visualisation (SimVis), Glasgow School of Art, Pacific Quay, Glasgow G51 1EA, United Kingdom
| | - Marc Reid
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
32
|
Zarei S, Komeili G, Bahadorikhalili S, Yahya‐Meymandi A, Karami‐Zarandi M, Larijani B, Biglar M, Sadat Ebrahimi SE, Mahdavi M. Design, synthesis and antibacterial activity evaluation of novel 2‐(4‐((
1‐aryl‐1
H
‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)2‐(2‐oxoazetidin‐1‐yl)acetamide derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samaneh Zarei
- Metabolic Diseases Research Center Zanjan University of Medical Sciences Zanjan Iran
| | - Golzar Komeili
- Department of Medicinal Chemistry, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | | | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Department of Medicinal Chemistry, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
33
|
Balijepalli AS, McNeely JH, Hamoud A, Grinstaff MW. Guidelines for β-Lactam Synthesis: Glycal Protecting Groups Dictate Stereoelectronics and [2+2] Cycloaddition Kinetics. J Org Chem 2020; 85:12044-12057. [DOI: 10.1021/acs.joc.0c00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anant S. Balijepalli
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - James H. McNeely
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Aladin Hamoud
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
34
|
Morphological Differentiation of Streptomyces clavuligerus Exposed to Diverse Environmental Conditions and Its Relationship with Clavulanic Acid Biosynthesis. Processes (Basel) 2020. [DOI: 10.3390/pr8091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clavulanic acid (CA) is a potent inhibitor of class A β-lactamase enzymes produced by Streptomyces clavuligerus (S. clavuligerus) as a defense mechanism. Due to its industrial interest, the process optimization is under continuous investigation. This work aimed at identifying the potential relationship that might exist between S. clavuligerus ATCC 27064 morphology and CA biosynthesis. For this, modified culture conditions such as source, size, and age of inoculum, culture media, and geometry of fermentation flasks were tested. We observed that high density spore suspensions (1 × 107 spores/mL) represent the best inoculum source for S. clavuligerus cell suspension culture. Further, we studied the life cycle of S. clavuligerus in liquid medium, using optic, confocal, and electron microscopy; results allowed us to observe a potential relationship that might exist between the accumulation of CA and the morphology of disperse hyphae. Reactor geometries that increase shear stress promote smaller pellets and a quick disintegration of these in dispersed secondary mycelia, which begins the pseudosporulation process, thus easing CA accumulation. These outcomes greatly contribute to improving the understanding of antibiotic biosynthesis in the Streptomyces genus.
Collapse
|
35
|
Gómez-Ríos D, López-Agudelo VA, Ramírez-Malule H, Neubauer P, Junne S, Ochoa S, Ríos-Estepa R. A Genome-Scale Insight into the Effect of Shear Stress During the Fed-Batch Production of Clavulanic Acid by Streptomyces Clavuligerus. Microorganisms 2020; 8:E1255. [PMID: 32824882 PMCID: PMC7569809 DOI: 10.3390/microorganisms8091255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Streptomyces clavuligerus is a filamentous Gram-positive bacterial producer of the β-lactamase inhibitor clavulanic acid. Antibiotics biosynthesis in the Streptomyces genus is usually triggered by nutritional and environmental perturbations. In this work, a new genome scale metabolic network of Streptomyces clavuligerus was reconstructed and used to study the experimentally observed effect of oxygen and phosphate concentrations on clavulanic acid biosynthesis under high and low shear stress. A flux balance analysis based on experimental evidence revealed that clavulanic acid biosynthetic reaction fluxes are favored in conditions of phosphate limitation, and this is correlated with enhanced activity of central and amino acid metabolism, as well as with enhanced oxygen uptake. In silico and experimental results show a possible slowing down of tricarboxylic acid (TCA) due to reduced oxygen availability in low shear stress conditions. In contrast, high shear stress conditions are connected with high intracellular oxygen availability favoring TCA activity, precursors availability and clavulanic acid (CA) production.
Collapse
Affiliation(s)
- David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Victor A. López-Agudelo
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Howard Ramírez-Malule
- Escuela de Ingeniería Química, Universidad del Valle, A.A. 25360, Cali 76001, Colombia;
| | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany; (P.N.); (S.J.)
| | - Stefan Junne
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany; (P.N.); (S.J.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Calle 59 A 63-20, Medellín 050010, Colombia
| |
Collapse
|
36
|
Koech LC, Irungu BN, Ng'ang'a MM, Ondicho JM, Keter LK. Quality and Brands of Amoxicillin Formulations in Nairobi, Kenya. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7091278. [PMID: 32685520 PMCID: PMC7306854 DOI: 10.1155/2020/7091278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/04/2020] [Indexed: 11/17/2022]
Abstract
Antibiotics are among the most counterfeited anti-infectious medicines in developing countries. Amoxicillin is one of the commonly prescribed, affordable, and easily accessible antibiotic in Kenya. It is a broad-spectrum antibiotic hence commonly used in chemotherapy. This study sought to determine the quality and identify the various brands of amoxicillin and its combination amoxicillin/clavulanic acid marketed in Nairobi County. Nairobi is the capital city of Kenya, gateway for imports and exports, and the headquarters to most of the pharmaceutical distributors. Ten wards in Nairobi County representing different socioeconomic settings were purposively sampled for the study. A detailed questionnaire was used to collect background data on brands of amoxicillin and amoxicillin/clavulanic acid in the market. A total of 106 different brands were found in the market: 85 were imports while 21 were locally manufactured. Fifty-three samples were analyzed with reference to the United States Pharmacopoeia. Amoxicillin and clavulanic acid contents for oral suspensions were determined immediately after reconstitution and 7 days thereafter to determine their stability during the prescription period. On day seven, 23.1% (3 out of 13) of amoxicillin and 66.7% (8 out of 12) amoxicillin/clavulanic acid oral suspensions presented levels below recommended limits. Uniformity of weight for amoxicillin capsules noted 13.6% (3 out of 22) failure rate, while amoxicillin/clavulanic acid tablets complied. Potency determination for all amoxicillin capsules analyzed were within required limits, but amoxicillin/clavulanic acid tablets showed 33.3% (2 out of 6) noncompliance. For amoxicillin capsule and amoxicillin/clavulanic acid tablet dissolution tests, there was 10.5% (2 out of 19) and 50% (2 out of 4) noncompliance, respectively. Overall, 37.7% of the drugs analyzed failed to comply with the Pharmacopoeia. These results highlight the presence of poor-quality amoxicillin formulations in Nairobi County, affirming the need for regular postmarket surveillance to inform on the situation of antibiotic quality in the Kenyan market.
Collapse
Affiliation(s)
- Lilian C. Koech
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Beatrice N. Irungu
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Margaret M. Ng'ang'a
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Joyce M. Ondicho
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Lucia K. Keter
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
37
|
AbuSara NF, Piercey BM, Moore MA, Shaikh AA, Nothias LF, Srivastava SK, Cruz-Morales P, Dorrestein PC, Barona-Gómez F, Tahlan K. Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Front Microbiol 2019; 10:2550. [PMID: 31787949 PMCID: PMC6856088 DOI: 10.3389/fmicb.2019.02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Clavulanic acid is a bacterial specialized metabolite, which inhibits certain serine β-lactamases, enzymes that inactivate β-lactam antibiotics to confer resistance. Due to this activity, clavulanic acid is widely used in combination with penicillin and cephalosporin (β-lactam) antibiotics to treat infections caused by β-lactamase-producing bacteria. Clavulanic acid is industrially produced by fermenting Streptomyces clavuligerus, as large-scale chemical synthesis is not commercially feasible. Other than S. clavuligerus, Streptomyces jumonjinensis and Streptomyces katsurahamanus also produce clavulanic acid along with cephamycin C, but information regarding their genome sequences is not available. In addition, the Streptomyces contain many biosynthetic gene clusters thought to be "cryptic," as the specialized metabolites produced by them are not known. Therefore, we sequenced the genomes of S. jumonjinensis and S. katsurahamanus, and examined their metabolomes using untargeted mass spectrometry along with S. clavuligerus for comparison. We analyzed the biosynthetic gene cluster content of the three species to correlate their biosynthetic capacities, by matching them with the specialized metabolites detected in the current study. It was recently reported that S. clavuligerus can produce the plant-associated metabolite naringenin, and we describe more examples of such specialized metabolites in extracts from the three Streptomyces species. Detailed comparisons of the biosynthetic gene clusters involved in clavulanic acid (and cephamycin C) production were also performed, and based on our analyses, we propose the core set of genes responsible for producing this medicinally important metabolite.
Collapse
Affiliation(s)
- Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Marcus A. Moore
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Arshad Ali Shaikh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | | | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
38
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
39
|
Fu J, Qin R, Zong G, Zhong C, Zhang P, Kang N, Qi X, Cao G. The two-component system CepRS regulates the cephamycin C biosynthesis in Streptomyces clavuligerus F613-1. AMB Express 2019; 9:118. [PMID: 31352530 PMCID: PMC6661058 DOI: 10.1186/s13568-019-0844-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
During industrial fermentation, Streptomyces clavuligerus F613-1 simultaneously produces primary product clavulanic acid (CA) and cephamycin C. The cephamycin C biosynthetic gene cluster and pathway have been basically elucidated and the CcaR positive regulator was found to control the cephamycin genes expression. However, additional mechanisms of regulation cannot be excluded. The BB341_RS13780/13785 gene pair in S. clavuligerus F613-1 (annotated as SCLAV_2960/2959 in S. clavuligerus ATCC27064) encodes a bacterial two-component system (TCS) and were designated as CepRS (for cephamycin regulator/sensor). CepRS significantly affects cephamycin C production but only slightly affects CA production. To further understand the regulation of cephamycin C biosynthesis, the cepRS genes were deleted from S. clavuligerus F613-1. The deletion mutant resulted in decreased cephamycin C production but had no phenotypic effects. Real-time quantitative polymerase chain reaction analysis revealed that CepRS regulates the expression of most genes involved in cephamycin C biosynthesis, with electrophoretic mobility shift assays showing that CepR interacts with the cefD-cmcI intergenic region. These results demonstrate that the CepR response regulator serves as a transcriptional activator of cephamycin C biosynthesis, which may provide an approach for metabolic engineering methods for CA production by S. clavuligerus F613-1 in future.
Collapse
|
40
|
Comparative Transcriptome Analysis of Streptomyces Clavuligerus in Response to Favorable and Restrictive Nutritional Conditions. Antibiotics (Basel) 2019; 8:antibiotics8030096. [PMID: 31330947 PMCID: PMC6784218 DOI: 10.3390/antibiotics8030096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Clavulanic acid (CA), a β-lactamase inhibitor, is industrially produced by the fermentation of Streptomyces clavuligerus. The efficiency of CA production is associated with media composition, culture conditions and physiological and genetic strain characteristics. However, the molecular pathways that govern CA regulation in S. clavuligerus remain unknown. Methods and Results: Here we used RNA-seq to perform a comparative transcriptome analysis of S. clavuligerus ATCC 27064 wild-type strain grown in both a favorable soybean-based medium and in limited media conditions to further contribute to the understanding of S. clavuligerus metabolism and its regulation. A total of 350 genes were found to be differentially expressed between conditions; 245 genes were up-regulated in favorable conditions compared to unfavorable. Conclusion: The up-regulated expression of many regulatory and biosynthetic CA genes was positively associated with the favorable complex media condition along with pleiotropic regulators, including proteases and some genes whose biological function have not been previously reported. Knowledge from differences between transcriptomes from complex/defined media represents an advance in the understanding of regulatory paths involved in S. clavuligerus’ metabolic response, enabling the rational design of future experiments.
Collapse
|
41
|
Stover KR, Barber KE, Wagner JL. Allergic Reactions and Cross-Reactivity Potential with Beta-Lactamase Inhibitors. PHARMACY 2019; 7:E77. [PMID: 31261671 PMCID: PMC6789713 DOI: 10.3390/pharmacy7030077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Although beta-lactam allergies are an emerging focus of stewardship programs and interventions, less is publicly released regarding allergies to beta-lactamase inhibitors. This review presents and evaluates the data regarding allergic reactions with beta-lactamase inhibitors. Clavulanate, sulbactam, and tazobactam are beta-lactam-based beta-lactamase inhibitors that are combined with several penicillins or cephalosporins in order to preserve antimicrobial activity in the presence of beta-lactamases. Avibactam, relebactam, and vaborbactam are non-beta-lactam beta-lactamase inhibitors that are combined with cephalosporins or carbapenems in order to expand the antimicrobial activity against broader-spectrum beta-lactamases. Case reports document hypersensitivity reactions to clavulanate, sulbactam, and tazobactam, but not to avibactam, relebactam, or vaborbactam. Based on these reports and considering the chemical structures, cross-allergenicity with beta-lactams is likely with sulbactam and tazobactam. Considering the slightly altered beta-lactam structure, cross-allergenicity is less likely with clavulanate, but still possible. It appears that cross-allergenicity between beta-lactam antimicrobials and the newer, non-beta-lactam beta-lactamase inhibitors is unlikely. It is important for clinicians to perform allergy testing to both the beta-lactam and the beta-lactamase inhibitor in order to confirm the specific allergy and reaction type.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS 39216, USA.
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS 39216, USA
| | - Jamie L Wagner
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS 39216, USA
| |
Collapse
|
42
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
43
|
Fu J, Qin R, Zong G, Liu C, Kang N, Zhong C, Cao G. The CagRS Two-Component System Regulates Clavulanic Acid Metabolism via Multiple Pathways in Streptomyces clavuligerus F613-1. Front Microbiol 2019; 10:244. [PMID: 30837970 PMCID: PMC6382702 DOI: 10.3389/fmicb.2019.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Streptomyces clavuligerus F613-1 produces a clinically important β-lactamase inhibitor, clavulanic acid (CA). Although the biosynthesis pathway of CA has essentially been elucidated, the global regulatory mechanisms of CA biosynthesis remain unclear. The paired genes cagS and cagR, which are annotated, respectively, as orf22 and orf23 in S. clavuligerus ATCC 27064, encode a bacterial two-component regulatory system (TCS) and were found next to the CA biosynthetic gene cluster of S. clavuligerus F613-1. To further elucidate the regulatory mechanism of CA biosynthesis, the CagRS TCS was deleted from S. clavuligerus F613-1. Deletion of cagRS resulted in decreased production of CA, but the strain phenotype was not otherwise affected. Both transcriptome and ChIP-seq data revealed that, in addition to CA biosynthesis, the CagRS TCS mainly regulates genes involved in primary metabolism, such as glyceraldehyde 3-phosphate (G3P) metabolism and arginine biosynthesis. Notably, both G3P and arginine are precursors of CA. Electrophoretic mobility shift assays demonstrated that the response regulator CagR could bind to the intergenic regions of argG, argC, oat1, oat2, ceaS1, and claR in vitro, suggesting that CagR can directly regulate genes involved in arginine and CA biosynthesis. This study indicated that CagRS is a pleiotropic regulator that can directly affect the biosynthesis of CA and indirectly affect CA production by regulating the metabolism of arginine and G3P. Our findings provide new insights into the regulation of CA biosynthetic pathways and provide an innovative approach for future metabolic engineering efforts for CA production in S. clavuligerus.
Collapse
Affiliation(s)
- Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Ronghuo Qin
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ni Kang
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
44
|
Li Z, Li L, Zheng Y, Chen C, Sun T. Diagnostic absolute configuration determination of clavulanate potassium: A comprehensive investigation of chiroptical spectroscopies and theoretical calculations. J Pharm Biomed Anal 2018; 160:351-359. [DOI: 10.1016/j.jpba.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/12/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
|
45
|
Kumari A, Bari S, Modi G, Berry S, Khullar S, Mandal SK, Bhalla A. Comprehensive study towards the desulfonylation/desulfinylation of cis-3-functionalized 3-phenylsulfonyl/sulfinyl-β-lactams to access novel cis-3-monosubstituted-β-lactams. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Viana Marques DDA, Machado SEF, Ebinuma VCS, Duarte CDAL, Converti A, Porto ALF. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics (Basel) 2018; 7:E61. [PMID: 30018235 PMCID: PMC6163296 DOI: 10.3390/antibiotics7030061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
β-Lactamase inhibitors have emerged as an effective alternative to reduce the effects of resistance against β-lactam antibiotics. The Streptomyces genus is known for being an exceptional natural source of antimicrobials and β-lactamase inhibitors such as clavulanic acid, which is largely applied in clinical practice. To protect against the increasing prevalence of multidrug-resistant bacterial strains, new antibiotics and β-lactamase inhibitors need to be discovered and developed. This review will cover an update about the main β-lactamase inhibitors producers belonging to the Streptomyces genus; advanced methods, such as genetic and metabolic engineering, to enhance inhibitor production compared with wild-type strains; and fermentation and purification processes. Moreover, clinical practice and commercial issues are discussed. The commitment of companies and governments to develop innovative strategies and methods to improve the access to new, efficient, and potentially cost-effective microbial products to combat the antimicrobial resistance is also highlighted.
Collapse
Affiliation(s)
- Daniela de Araújo Viana Marques
- Campus Serra Talhada, University of Pernambuco, Avenida Custódio Conrado, 600, AABB, Serra Talhada, Pernambuco 56912-550, Brazil.
| | - Suellen Emilliany Feitosa Machado
- Department of Antibiotics, Federal University of Pernambuco, Avenida da Engenharia, 2° andar, Cidade Universitária, Recife, Pernambuco 50740-600, Brazil.
| | - Valéria Carvalho Santos Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Araraquara 14800-903, Brazil.
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Pole, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy.
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, Recife, Pernambuco 52171-900, Brazil.
| |
Collapse
|
47
|
Ochoa-Aguilar A, Ventura-Martinez R, Sotomayor-Sobrino MA, Jaimez R, Coffeen U, Jiménez-González A, Balcázar-Ochoa LG, Pérez-Medina-Carballo R, Rodriguez R, Plancarte-Sánchez R. Ceftriaxone and clavulanic acid induce antiallodynia and anti-inflammatory effects in rats using the carrageenan model. J Pain Res 2018; 11:977-985. [PMID: 29861639 PMCID: PMC5968784 DOI: 10.2147/jpr.s154661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Ceftriaxone (CFX) and clavulanic acid (CA) are 2 β-lactam molecules widely used as antibiotics. However, several reports of their antiallodynic properties have been published in recent years. Although this effect has been considered mostly due to a GLT1 overexpression, these molecules have also been proven to induce direct immunomodulation. In this work, we determine the acute analgesic effect of CFX and CA in an inflammatory pain model and assess if their administration may induce anti-inflammatory effects. Methods The carrageenan (Carr) test was used as an inflammatory pain model. Both mechanical and thermal responses were analyzed after CFX and CA administration at different times. A plethysmometer was used to determine inflammation. Also, TNF-α and IL-10 serum concentrations were determined by enzyme-linked immunosorbent assay. Results Both CFX and CA induced a significant thermal antiallodynic effect 3 and 24 h after administration. Furthermore, CA induced a mechanical antiallodynic effect 30, 60, and 90 min after administration. Moreover, a significant anti-inflammatory effect was found for both molecules 24 h after Carr injection. Also, both CA and CFX modulated TNF-α and IL-10 serum concentrations at different times. Conclusion Our results provide evidence that both CFX and CA cause an analgesic effect on a Carr inflammatory pain model and that said analgesic effect differs between each β-lactam molecule. Furthermore, this effect may be related to an anti-inflammatory effect of both molecules and a direct TNF-α and IL-10 serum concentration modulation.
Collapse
Affiliation(s)
- Abraham Ochoa-Aguilar
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México.,Research Department, Mexican Faculty of Medicine, La Salle University, Mexico City, México
| | - Rosa Ventura-Martinez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | | - Ruth Jaimez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | - Ulises Coffeen
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México
| | | | | | | | - Rodolfo Rodriguez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | |
Collapse
|
48
|
Silakhori S, Hosseinzadeh H, Shaebani Behbahani F, Mehri S. Neuroprotective effect of clavulanic acid on trimethyltin (TMT)-induced cytotoxicity in PC12 cells. Drug Chem Toxicol 2018; 42:187-193. [DOI: 10.1080/01480545.2018.1468772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samaneh Silakhori
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shaebani Behbahani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Ciemniak K, Cielecka-Piontek J, Szymanowska D, Wiergowska G. Intereactions between doripenem and clavulanate — Application of minimal inhibitory concentration analysis and cytometry flow for bactericidal studies. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Heterologous production of clavulanic acid intermediates in Streptomyces venezuelae. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0187-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|