1
|
Liu T, Guo R, Wang X, Gu N, Wu N, Wu J, Wang Y. Enhanced butanol production through intracellular NADH regeneration in CdSe-C. acetobutylicum g semi-photosynthetic biohybrid system. BIORESOURCE TECHNOLOGY 2024; 418:131939. [PMID: 39638007 DOI: 10.1016/j.biortech.2024.131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Current environmental challenges and energy crises highlight the urgent need for a transition in energy mix. In this study, an innovative semi-photosynthetic biohybrid system that combined light-activated cadmium selenide quantum dots (CdSe QDs) with engineered Gram-positive anaerobic bacteria, Clostridium acetobutylicumg (C. acetobutylicumg), was developed to enhance renewable butanol production. The results demonstrated that CdSe QDs could be biosynthesized intracellularly within C. acetobutylicumg through the introduction of glutathione pathway, without causing significant damage to bacteria. Furthermore, this system showed remarkable tolerance to butanol and weak acids. Under illumination, the biological synthesized CdSe QDs enabled C. acetobutylicumg to achieve a 45.5 % increase in NADH/NAD+ ratio compared to C. acetobutylicumg without CdSe QDs. When utilizing undetoxified rice straw hydrolysate in photo-fermentation, this system achieved a butanol titer of 14.82 g/L and a yield of 0.29 g/g. Overall, this work aims to effectively harness solar energy and biomass resources for sustainable clean biofuel production.
Collapse
Affiliation(s)
- Tingting Liu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Ran Guo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xinyi Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Ning Gu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianguo Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China.
| | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Gergov E, Petrova P, Arsov A, Ignatova I, Tsigoriyna L, Armenova N, Petrov K. Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin. Int J Mol Sci 2024; 25:11983. [PMID: 39596053 PMCID: PMC11594243 DOI: 10.3390/ijms252211983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Bacillus licheniformis 24 (BL24) is an efficient, non-pathogenic producer of 2,3-butanediol (2,3-BD). However, during inulin fermentation, the strain produces large amounts of exopolysaccharides (EPS), which interfere with the process' performance. The present study aims to investigate the effect that inactivation of the sacB gene, encoding levansucrase in BL24, has on 2,3-BD production efficiency. Knockout of the sacB gene was accomplished via insertional inactivation. The sacB-knockout variant formed 0.57 g/L EPS from sucrose and 0.7-0.8 g/L EPS from glucose and fructose, a 15- and 2.5-fold reduction relative to the wild type, respectively. Likewise, during batch fermentation with soluble inulin Frutafit® CLR, the mutant BLΔsacB produced significantly less EPS than the wild type, allowing the maintenance of pH at values favoring 2,3-BD synthesis. At pH 6.50, BLΔsacB reached a record titer of 128.7 g/L 2,3-BD, with productivity of 1.65 g/L/h, and a yield of 85.8% of the theoretical maximum. The obtained concentration of 2,3-BD is two-fold higher compared to that of the wild type. Subsequent RT-qPCR assays confirmed a successful sacB knockout. Three of the genes involved in inulin hydrolysis (sacA, sacC, and fruA) maintained their expression levels compared to the wild type, while that of levB increased. Although total EPS accumulation could not be completely eliminated via sacB gene knockout alone, the overall reduction in EPS content has enabled the highest yield of 2,3-BD from inulin to date, a promising result for the industrial production from inulin-rich substrates.
Collapse
Affiliation(s)
- Emanoel Gergov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Ina Ignatova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| |
Collapse
|
3
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
4
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
5
|
Lu J, Jiang W, Dong W, Zhou J, Zhang W, Jiang Y, Xin F, Jiang M. Construction of a Microbial Consortium for the De Novo Synthesis of Butyl Butyrate from Renewable Resources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3350-3361. [PMID: 36734010 DOI: 10.1021/acs.jafc.2c07650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Butyl butyrate has shown wide applications in food, cosmetic, and biofuel sectors. Currently, biosynthesis of butyl butyrate still requires exogenous addition of precursors and lipase, which increases the production cost and limits further large-scale development. In this study, a microbial consortium was first designed to realize direct butyl butyrate production from lignocellulose. The highest butyl butyrate concentration of 34.42 g/L was detected in the solvent phase from 60 g/L glucose using a microbial coculture system composed of Clostridium acetobutylicum NJ4 and Clostridium tyrobutyricum LD with the elimination of butyric acid supplementation. Meanwhile, 13.52 g/L butyl butyrate was synthesized from 60 g/L glucose using a microbial consortium composed of three strains including strain NJ4, strain LD, and Escherichia coli BL21- pET-29a(+)-LE without the addition of any exogenous precursors and lipase. In addition, 2.94 g/L butyl butyrate could be directly produced from 60 g/L microcrystalline cellulose when Trichoderma asperellum was added to the above-mentioned three-strain microbial consortium. This four-strain microbial consortium represents the first study regarding the direct butyl butyrate production from lignocellulose without the supplementation of exogenous precursors and lipase, which may be extended to the biosynthesis of other short-chain esters, such as ethyl acetate and butyl lactate.
Collapse
Affiliation(s)
- Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Jin X, Yin X, Ling L, Mao H, Dong X, Chang X, Chen M, Fang S. Adding glucose delays the conversion of ethanol and acetic acid to caproic acid in Lacrimispora celerecrescens JSJ-1. Appl Microbiol Biotechnol 2023; 107:1453-1463. [PMID: 36703009 DOI: 10.1007/s00253-023-12378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Caproic acid is an important fatty acid with diverse applications. In this study, the biomass growth and metabolites of Lacrimispora celerecrescens JSJ-1 were investigated under different carbon sources (ethanol, starch, sucrose, and glucose), with a focus on the effect of the coexistence of glucose and ethanol on the synthesis of caproic acid. The results showed that starch, glucose, and sucrose all contributed to the biomass of L. celerecrescens JSJ-1. Under the three carbon sources, L. celerecrescens JSJ-1 produced acetic acid, butyric acid, lactic acid, ethanol, and butanol, but caproic acid was not produced. Ethanol was the optimal substrate for the production of caproic acid. When glucose and ethanol coexisted, the generation time of caproic acid was delayed compared with that in ethanol sodium acetate medium (ES medium). This was because glucose was preferentially consumed over ethanol. Lactic acid was generated as a result of glucose consumption, which led to a significant decrease in pH from 6.45 to 4.68. The low pH (< 5) inhibited the synthesis of caproic acid. Then, the strain's usage of lactic acid and the reaction between CaCO3 and lactic acid caused the pH to increase. L. celerecrescens JSJ-1 did not start producing caproic acid using ethanol and acetic acid until the pH increased to 5.8. This research enriches the knowledge regarding the metabolism of L. celerecrescens JSJ-1 and provides guidelines for the industrial production of caproic acid by using L. celerecrescences JSJ-1. KEY POINTS: • Ethanol is the optimal substrate for the synthesis of caproic acid by Lacrimispora celerecrescens JSJ-1. • Lacrimispora celerecrescens JSJ-1 produced lactic acid rapidly when it used glucose, causing a sharp drop in pH. • pH is a crucial factor affecting the synthesis of caproic acid from ethanol by Lacrimispora celerecrescens JSJ-1.
Collapse
Affiliation(s)
- Xiangyi Jin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Xiangxiang Yin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Li Ling
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Hao Mao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | | | - Xu Chang
- Angel Yeast Co. Ltd, Yichang, 443200, China
| | - Maobin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Shangling Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
7
|
Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review. Appl Biochem Biotechnol 2023; 195:1574-1588. [PMID: 36346559 DOI: 10.1007/s12010-022-04169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Solar-driven biocatalysis technologies can combine inorganic photocatalytic materials with biological catalysts to convert CO2, light, and water into chemicals, offering the promise of high energy efficiency and a broader product scope than that of natural photosynthesis. Solar energy is the most abundant renewable energy source on earth, but it cannot be directly utilized by current industrial microorganisms. Therefore, the establishment of a solar-driven bio-catalysis platform, a bridge between solar energy and heterotrophic microorganisms, can dramatically increase carbon flux in biomanufacturing systems and consequently may revolutionize the biorefinery. This review first discusses the main applications of microbe-photocatalyst hybrid (MPH) systems in biorefinery processes. Then, various strategies to improve the electron transfer by microorganisms at the inorganic photocatalytic material interface are discussed, especially biohybrid systems based on autotrophic or heterotrophic bacteria and photocatalytic materials. Finally, we discuss the current challenges and offer potential solutions for the development of MPH systems.
Collapse
|
8
|
An Alternative Approach to Improve the Butanol Production Efficiency from Sweet Sorghum Stem Juice Using Immobilized Cells Combined with an In Situ Gas Stripping System. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the nitrogen source and buffers used in butanol production with Clostridium beijerinckii TISTR 1461 from sweet sorghum stem juice (SSJ) containing 60 g/L of total sugar were first studied in this paper. Among the various nitrogen sources (dried spent yeast, urea, ammonium acetate, ammonium sulfate), urea was found to be the most suitable for butanol production. SSJ supplemented with urea (0.64 g/L) and cocktail buffers (KH2PO4, 0.5 g/L; K2HPO4, 0.5 g/L; ammonium acetate, 2.2 g/L) gave the highest butanol concentration (PB, 10.13 g/L). Then, the capability of immobilized C. beijerinckii TISTR 1461 cells for butanol fermentation was investigated. Two residual waste materials were examined as immobilized cell carriers. Bamboo chopstick pieces were more appropriate as carriers for cell immobilization than cigarette filter tips. The PB value of the immobilized cells on the bamboo chopstick pieces was ~13% higher than that on the cigarette filter tips. Using the response surface methodology (RSM), 1.9 cm bamboo chopstick pieces with a carrier loading of 1:32 (w/v) were the optimum conditions for cell immobilization for butanol production. Under these conditions, the PB value was 11.62 g/L. To improve the butanol production efficiency, a gas stripping system (GS) was connected to the fermenter. It was found that the PB (14.02 g/L) and butanol productivity (QB, 0.29 g/L·h) values improved by ~21% compared to butanol fermentation using no gas stripping.
Collapse
|
9
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
10
|
Effectiveness of Low-Cost Bioreactors Integrated with a Gas Stripping System for Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effectiveness of column bioreactors for butanol fermentation from sugarcane molasses by Clostridium beijerinckii TISTR 1461 was investigated. This fermentation was operated at an initial pH of 6.5 and temperature of 37 °C under anaerobic conditions. A 1-L bubble column bioreactor was used with various gas circulation rates ranging from 0.2 to 1.0 L/min. The highest butanol concentration (PB, 8.72 g/L), productivity (QB, 0.24 g/L∙h) and yield (YB/S, 0.21 g/g) were obtained with a gas circulation of 0.2 L/min. To improve butanol production efficiency, gas-lift column bioreactors with internal and external loops at 0.2 L/min of circulating gas were used. Higher PB (10.50–10.58 g/L), QB (0.29 g/L∙h) and YB/S (0.22–0.23 g/g) values were obtained in gas-lift column bioreactors. These values were similar to those using a more complex 2-L stirred-tank bioreactor (PB, 10.10 g/L; QB, 0.28 g/L h and YB/S, 0.22 g/g). Hence, gas-lift column bioreactors have potential for use as low-cost fermenters instead of stirred-tank bioreactors for butanol fermentation. When the gas-lift column bioreactor with an internal loop was coupled with a gas stripping system, it yielded an enhanced PB and sugar consumption of approximately 9% and 7%, respectively, compared to a system with no gas stripping.
Collapse
|
11
|
Wambui J, Stevens MJA, Cernela N, Stephan R. Unraveling the Genotypic and Phenotypic Diversity of the Psychrophilic Clostridium estertheticum Complex, a Meat Spoilage Agent. Front Microbiol 2022; 13:856810. [PMID: 35418954 PMCID: PMC8996182 DOI: 10.3389/fmicb.2022.856810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The spoilage of vacuum-packed meat by Clostridium estertheticum complex (CEC), which is accompanied by or without production of copious amounts of gas, has been linked to the acetone–butyrate–ethanol fermentation, but the mechanism behind the variable gas production has not been fully elucidated. The reconstruction and comparison of intra- and interspecies metabolic pathways linked to meat spoilage at the genomic level can unravel the genetic basis for the variable phenotype. However, this is hindered by unavailability of CEC genomes, which in addition, has hampered the determination of genetic diversity and its drivers within CEC. Therefore, the current study aimed at determining the diversity of CEC through comprehensive comparative genomics. Fifty CEC genomes from 11 CEC species were compared. Recombination and gene gain/loss events were identified as important sources of natural variation within CEC, with the latter being pronounced in genomospecies2 that has lost genes related to flagellar assembly and signaling. Pan-genome analysis revealed variations in carbohydrate metabolic and hydrogenases genes within the complex. Variable inter- and intraspecies gas production in meat by C. estertheticum and Clostridium tagluense were associated with the distribution of the [NiFe]-hydrogenase hyp gene cluster whose absence or presence was associated with occurrence or lack of pack distention, respectively. Through comparative genomics, we have shown CEC species exhibit high genetic diversity that can be partly attributed to recombination and gene gain/loss events. We have also shown genetic basis for variable gas production in meat can be attributed to the presence/absence of the hyp gene cluster.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
13
|
Kinetics of ABE fermentation considering the different phenotypes present in a batch culture of Clostridium beijerinckii NCIMB-8052. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Etteh CC, Ibiyeye AO, Jelani FB, Rasheed AA, Ette OJ, Victor I. Production of biobutanol using Clostridia Spp through novel ABE continuous fermentation of selected waste streams and industrial by-products. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
16
|
Sedlar K, Vasylkivska M, Musilova J, Branska B, Provaznik I, Patakova P. Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics 2020; 113:1109-1119. [PMID: 33166602 DOI: 10.1016/j.ygeno.2020.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Clostridium diolis DSM 15410 is a type strain of solventogenic clostridium capable of conducting isopropanol-butanol-ethanol fermentation. By studying its growth on different carbohydrates, we verified its ability to utilize glycerol and produce 1,3-propanediol and discovered its ability to produced isopropanol. Complete genome sequencing showed that its genome is a single circular chromosome and belongs to the cluster I (sensu scricto) of the genus Clostridium. By cultivation analysis we highlighted its specific behavior in comparison to two selected closely related strains. Despite the fact that several CRISPR loci were found, 16 putative prophages showed the ability to receive foreign DNA. Thus, the strain has the necessary features for future engineering of its 1,3-propanediol biosynthetic pathway and for the possible industrial utilization in the production of biofuels.
Collapse
Affiliation(s)
- Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic.
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
17
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
18
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
19
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
20
|
Risso F, Rochón E, Cebreiros F, Ferrari MD, Lareo C. Effect of Corn Steep Liquor on Butanol Fermentation of Eucalyptus Cellulose Enzymatic Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Florencia Risso
- Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Eloísa Rochón
- Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Florencia Cebreiros
- Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Mario Daniel Ferrari
- Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Claudia Lareo
- Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2948282. [PMID: 32280686 PMCID: PMC7114766 DOI: 10.1155/2020/2948282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Growing evidence indicated that the gut microbiota was the intrinsic and essential component of the cancer microenvironment, which played vital roles in the development and progression of colorectal cancer (CRC). In our present study, we investigated the alterations of fecal abundant microbiota with real-time quantitative PCR and the changes of indicators of gut mucosal barrier from 53 early-stage CRC patients and 45 matched healthy controls. We found that the traditional beneficial bacteria such as Lactobacillus and Bifidobacterium decreased significantly and the carcinogenic bacteria such as Enterobacteriaceae and Fusobacterium nucleatum were significantly increased in CRC patients. We also found gut mucosal barrier dysfunction in CRC patients with increased levels of endotoxin (LPS), D-lactate, and diamine oxidase (DAO). With Pearson's correlation analysis, D-lactate, LPS, and DAO were correlated negatively with Lactobacillus and Bifidobacterium and positively with Enterobacteriaceae and F. nucleatum. Our present study found dysbiosis of the fecal microbiota and dysfunction of the gut mucosal barrier in patients with early-stage CRC, which implicated that fecal abundant bacteria and gut mucosal barrier indicators could be used as targets to monitor the development and progression of CRC in a noninvasive and dynamic manner.
Collapse
|
22
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
23
|
Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. J Ind Microbiol Biotechnol 2020; 47:319-328. [PMID: 32103460 DOI: 10.1007/s10295-020-02266-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.
Collapse
|
24
|
Zhao T, Tashiro Y, Sonomoto K. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 2019; 103:9359-9371. [PMID: 31720773 DOI: 10.1007/s00253-019-10198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
There is a renewed interest in acetone-butanol-ethanol (ABE) fermentation from renewable substrates for the sustainable and environment-friendly production of biofuel and platform chemicals. However, the ABE fermentation is associated with several challenges due to the presence of heterogeneous components in the renewable substrates and the intrinsic characteristics of ABE fermentation process. Hence, there is a need to select optimal substrates and modify their characteristics suitable for the ABE fermentation process or microbial strain. This "designed biomass" can be used to establish the consolidated bioprocessing systems. As there are very few reports on designed biomass, the main objectives of this review are to summarize the main challenges associated with ABE fermentation from renewable substrates and to introduce feasible strategies for designing the substrates through pretreatment and hydrolysis technologies as well as through the establishment of consolidated bioprocessing systems. This review offers new insights on improving the efficiency of ABE fermentation from designed renewable substrates.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
25
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
26
|
de Souza Moraes B, Mary dos Santos G, Palladino Delforno T, Tadeu Fuess L, José da Silva A. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. J Biosci Bioeng 2019; 127:594-601. [DOI: 10.1016/j.jbiosc.2018.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
|
27
|
Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. BIORESOURCE TECHNOLOGY 2019; 272:561-569. [PMID: 30396113 DOI: 10.1016/j.biortech.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
When lignocellulosic biomass was used for acetone-butanol-ethanol (ABE) fermentation, several lignocellulose-derived inhibitors, which are toxic to Clostridium acetobutylicum, were generated during acid hydrolysis process and seriously hindered the industrialization of lignocellulosic butanol. In this study, an engineered strain 824(proABC) with significantly improved tolerance to multiple lignocellulose-derived inhibitors (formic acid and phenolic compounds) was constructed by strengthening the proline biosynthesis. The engineered strain exhibited more effective synthesis ability of proline and scavenging ability of reactive oxygen species (ROS). Consequently, the butanol produced by 824(proABC) was 1-, 2.4- or 3.4-fold higher than that of the wild type strain when using the undetoxified hydrolysate of soybean straw, rice straw or corn straw as the substrate, respectively. Therefore, enhancing the proline biosynthesis can be used as an effective strategy to improve the tolerance of C. acetobutylicum to multiple lignocellulose-derived inhibitors, and 824(proABC) has great potential to produce butanol from undetoxified lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yukai Suo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
Swidah R, Ogunlabi O, Grant CM, Ashe MP. n-Butanol production in S. cerevisiae: co-ordinate use of endogenous and exogenous pathways. Appl Microbiol Biotechnol 2018; 102:9857-9866. [PMID: 30171268 PMCID: PMC6208969 DOI: 10.1007/s00253-018-9305-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
n-Butanol represents a key commodity chemical and holds significant potential as a biofuel. It can be produced naturally by Clostridia species via the ABE pathway. However, butanol production via such systems can be associated with significant drawbacks. Therefore, substantial efforts have been made toward engineering a suitable industrial host for butanol production. For instance, we previously generated a metabolically engineered Saccharomyces cerevisiae strain that produces ~300 mg/L butanol from combined endogenous and exogenous pathways. In this current study, the endogenous and exogenous pathways of butanol production were further characterised, and their relative contribution to the overall butanol titre was assessed. Deletion of any single component of the exogenous ABE pathway was sufficient to significantly reduce butanol production. Further evidence for a major contribution from the ABE pathway came with the discovery that specific yeast deletion mutants only affected butanol production from this pathway and had a significant impact on butanol levels. In previous studies, the threonine-based ketoacid (TBK) pathway has been proposed to explain endogenous butanol synthesis in ADH1 mutants. However, we find that key mutants in this pathway have little impact on endogenous butanol production; hence, this pathway does not explain endogenous butanol production in our strains. Instead, endogenous butanol production appears to rely on glycine metabolism via an α-ketovalerate intermediate. Indeed, yeast cells can utilise α-ketovalerate as a supplement to generate high butanol titres (> 2 g/L). The future characterisation and optimisation of the enzymatic activities required for this pathway provides an exciting area in the generation of robust butanol production strategies.
Collapse
Affiliation(s)
- R Swidah
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - O Ogunlabi
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - C M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - M P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK.
| |
Collapse
|
29
|
Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RAI, Kim KH, Yang IS, Govindwar SP, Kim S, Jeon BH. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. BIORESOURCE TECHNOLOGY 2018; 258:365-375. [PMID: 29501272 DOI: 10.1016/j.biortech.2018.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32817, USA
| | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Akhil N Kabra
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Il-Seung Yang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sunjoon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
30
|
Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics 2018; 19:415. [PMID: 29843608 PMCID: PMC5975590 DOI: 10.1186/s12864-018-4805-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Thinning supplies of natural resources increase attention to sustainable microbial production of bio-based fuels. The strain Clostridium beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its genotype and phenotype under various conditions. However, a link between these two levels, lying in the description of the gene regulation mechanisms, is missing for this strain, due to the lack of transcriptomic data. RESULTS In this paper, we present a transcription profile of the strain over the whole fermentation using an RNA-Seq dataset covering six time-points with the current highest dynamic range among solventogenic clostridia. We investigated the accuracy of the genome sequence and particular genome elements, including pseudogenes and prophages. While some pseudogenes were highly expressed, all three identified prophages remained silent. Furthermore, we identified major changes in the transcriptional activity of genes using differential expression analysis between adjacent time-points. We identified functional groups of these significantly regulated genes and together with fermentation and cultivation kinetics captured using liquid chromatography and flow cytometry, we identified basic changes in the metabolism of the strain during fermentation. Interestingly, C. beijerinckii NRRL B-598 demonstrated different behavior in comparison with the closely related strain C. beijerinckii NCIMB 8052 in the latter phases of cultivation. CONCLUSIONS We provided a complex analysis of the C. beijerinckii NRRL B-598 fermentation profile using several technologies, including RNA-Seq. We described the changes in the global metabolism of the strain and confirmed the uniqueness of its behavior. The whole experiment demonstrated a good reproducibility. Therefore, we will be able to repeat the experiment under selected conditions in order to investigate particular metabolic changes and signaling pathways suitable for following targeted engineering.
Collapse
Affiliation(s)
- Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| | - Pavlina Koscova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
- Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czechia
| | - Kristyna Kupkova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908 USA
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| |
Collapse
|
31
|
Buendia-Kandia F, Rondags E, Framboisier X, Mauviel G, Dufour A, Guedon E. Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose. AMB Express 2018; 8:85. [PMID: 29789978 PMCID: PMC5964051 DOI: 10.1186/s13568-018-0615-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 11/10/2022] Open
Abstract
Clostridium acetobutylicum, a promising organism for biomass transformation, has the capacity to utilize a wide variety of carbon sources. During pre-treatments of (ligno) cellulose through thermic and/or enzymatic processes, complex mixtures of oligo saccharides with beta 1,4-glycosidic bonds can be produced. In this paper, the capability of C. acetobutylicum to ferment glucose and cellobiose, alone and in mixtures was studied. Kinetic studies indicated that a diauxic growth occurs when both glucose and cellobiose are present in the medium. In mixtures, D-glucose is the preferred substrate even if cells were pre grown with cellobiose as the substrate. After the complete consumption of glucose, the growth kinetics exhibits an adaptation time, of few hours, before to be able to use cellobiose. Because of this diauxic phenomenon, the nature of the carbon source deriving from a cellulose hydrolysis pre-treatment could strongly influence the kinetic performances of a fermentation process with C. acetobutylicum.
Collapse
|
32
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
33
|
Jiménez-Bonilla P, Wang Y. In situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev Biotechnol 2017; 38:469-482. [PMID: 28920460 DOI: 10.1080/07388551.2017.1376308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Butanol is a precursor of many industrial chemicals, and a fuel that is more energetic, safer and easier to handle than ethanol. Fermentative biobutanol can be produced using renewable carbon sources such as agro-industrial residues and lignocellulosic biomass. Solventogenic clostridia are known as the most preeminent biobutanol producers. However, until now, solvent production through the fermentative routes is still not economically competitive compared to the petrochemical approaches, because the butanol is toxic to their own producer bacteria, and thus, the production capability is limited by the butanol tolerance of producing cells. In order to relieve butanol toxicity to the cells and improve the butanol production, many recovery strategies (either in situ or downstream of the fermentation) have been attempted by many researchers and varied success has been achieved. In this article, we summarize in situ recovery techniques that have been applied to butanol production through Clostridium fermentation, including liquid-liquid extraction, perstraction, reactive extraction, adsorption, pervaporation, vacuum fermentation, flash fermentation and gas stripping. We offer a prospective and an opinion about the past, present and the future of these techniques, such as the application of advanced membrane technology and use of recent extractants, including polymer solutions and ionic liquids, as well as the application of these techniques to assist the in situ synthesis of butanol derivatives.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,b Laboratory of Natural Products and Biological Assays (LAPRONEB), Chemistry Department , National University (UNA) , Heredia , Costa Rica
| | - Yi Wang
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,c Center for Bioenergy and Bioproducts , Auburn University , Auburn , AL , USA
| |
Collapse
|
34
|
Therien JB, Artz JH, Poudel S, Hamilton TL, Liu Z, Noone SM, Adams MWW, King PW, Bryant DA, Boyd ES, Peters JW. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5. Front Microbiol 2017; 8:1305. [PMID: 28747909 PMCID: PMC5506873 DOI: 10.3389/fmicb.2017.01305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 12/02/2022] Open
Abstract
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.
Collapse
Affiliation(s)
- Jesse B Therien
- Department of Chemistry and Biochemistry, Montana State University, BozemanMT, United States
| | - Jacob H Artz
- Department of Chemistry and Biochemistry, Montana State University, BozemanMT, United States
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, BozemanMT, United States
| | - Trinity L Hamilton
- Department of Chemistry and Biochemistry, Montana State University, BozemanMT, United States
| | - Zhenfeng Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Seth M Noone
- National Renewable Energy Laboratory, Biosciences Center, GoldenCO, United States
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, AthensGA, United States
| | - Paul W King
- National Renewable Energy Laboratory, Biosciences Center, GoldenCO, United States
| | - Donald A Bryant
- Department of Chemistry and Biochemistry, Montana State University, BozemanMT, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, BozemanMT, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, BozemanMT, United States
| |
Collapse
|
35
|
Hughes SR, Qureshi N, López-Núñez JC, Jones MA, Jarodsky JM, Galindo-Leva LÁ, Lindquist MR. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J Microbiol Biotechnol 2017; 33:78. [PMID: 28341907 DOI: 10.1007/s11274-017-2241-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.
Collapse
Affiliation(s)
- Stephen R Hughes
- Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), 1815 North University Street, Peoria, IL, 61604, USA.
| | - Nasib Qureshi
- Bioenergy Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL, 61604, USA
| | - Juan Carlos López-Núñez
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Joshua M Jarodsky
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Luz Ángela Galindo-Leva
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Mitchell R Lindquist
- Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), 1815 North University Street, Peoria, IL, 61604, USA
| |
Collapse
|
36
|
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation. Appl Microbiol Biotechnol 2017; 101:2251-2271. [PMID: 28210797 PMCID: PMC5320022 DOI: 10.1007/s00253-017-8137-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Collapse
|
37
|
Li HG, Ma XX, Zhang QH, Luo W, Wu YQ, Li XH. Enhanced butanol production by solvent tolerance Clostridium acetobutylicum SE25 from cassava flour in a fibrous bed bioreactor. BIORESOURCE TECHNOLOGY 2016; 221:412-418. [PMID: 27660992 DOI: 10.1016/j.biortech.2016.08.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 05/02/2023]
Abstract
To enhance the butanol productivity and reduce the material cost, acetone, butanol, and ethanol fermentation by Clostridium acetobutylicum SE25 was investigated using batch, repeated-batch and continuous cultures in a fibrous bed bioreactor, where cassava flour was used as the substrate. With periodical nutrient supplementation, stable butanol production was maintained for about 360h in a 6-cycle repeated-batch fermentation with an average butanol productivity of 0.28g/L/h and butanol yield of 0.32g/g-starch. In addition, the highest butanol productivity of 0.63g/L/h and butanol yield of 0.36g/g-starch were achieved when the dilution rate were investigated in continuous production of acetone, butanol, and ethanol using a fibrous bed bioreactor, which were 231.6% and 28.6% higher than those of the free-cell fermentation. On the other hand, this study also successfully comfirmed that the biofilm can provide an effective protection for the microbial cells which are growing in stressful environment.
Collapse
Affiliation(s)
- Han-Guang Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
| | - Xing-Xing Ma
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
| | - Qing-Hua Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China.
| | - Wei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ya-Qing Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
| | - Xun-Hang Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
| |
Collapse
|
38
|
Clostridia: a flexible microbial platform for the production of alcohols. Curr Opin Chem Biol 2016; 35:65-72. [PMID: 27619003 DOI: 10.1016/j.cbpa.2016.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
Abstract
Solventogenic clostridia are native producers of ethanol and many higher alcohols employing a broad range of cheap renewable substrates, such as lignocellulosic materials and C1 gases (CO and CO2). These characteristics enable solventogenic clostridia to act as flexible microbial platforms for the production of liquid biofuels. With the rapid development of genetic tools in recent years, the intrinsic intractability of clostridia has been largely overcome, thus, engineering clostridia for production of chemicals and fuels has attracted increasing interests. Here, we provide an overview of recent progress in the production of alcohols based on solventogenic clostridia. Saccharolytic, cellulolytic and gas-fermenting clostridia are discussed, with a special focus on strategies for metabolic engineering to enable and to improve clostridia for the production of higher alcohols.
Collapse
|
39
|
Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 2016; 363:fnw033. [DOI: 10.1093/femsle/fnw033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022] Open
|
40
|
Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol Lett 2016; 363:fnw031. [PMID: 26862145 DOI: 10.1093/femsle/fnw031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Flow cytometry, in combination with fluorescent staining, was used to evaluate population heterogeneity in acetone-butanol-ethanol fermentation that was carried out with type strain Clostridium beijerinckii NCIMB 8052 and non-type C. pasteurianum NRRL B-598. A combination of propidium iodide (PI) and carboxyfluorescein diacetate (CFDA), PI plus Syto-9 and bis-oxonol (BOX) alone were employed to distinguish between active and damaged cells together with simultaneous detection of spores. These strategies provided valuable information on the physiological state of clostridia. CFDA and PI staining gave the best separation of four distinct subpopulations of enzymatically active cells, doubly stained cells, damaged cells and spores. Proportional representation of cells in particular sub-regions correlated with growth characteristics, fermentation parameters such as substrate consumption and product formation in both species under different cultivation conditions.
Collapse
Affiliation(s)
- Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Marek Drahokoupil
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| |
Collapse
|
41
|
Li HG, Zhang QH, Yu XB, Wei L, Wang Q. Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour. BIORESOURCE TECHNOLOGY 2016; 201:148-155. [PMID: 26642220 DOI: 10.1016/j.biortech.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
A prominent delay with 12h was encountered in the phase shift from acidogenesis to solventogenesis in butanol production when the substrate-glucose was replaced by cassava flour. To solve this problem, different phase of pH regulation strategies were performed to shorten this delay time. With this effort, the phase shift occurred smoothly and the fermentation time was shortened. Under the optimal conditions, 16.24g/L butanol and 72h fermentation time were achieved, which were 25.3% higher and 14.3% shorter than those in the case of without pH regulation. Additionally, the effect of CaCO3 on "acid crash" and butanol production was also investigated. It was found that organic acids reassimilation would be of benefit to enhance butanol production. These results indicated that the simple but effective approach for acceleration of phase shift is a promising technique for shortening the fermentation time and improvement of butanol production.
Collapse
Affiliation(s)
- Han-guang Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qing-hua Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China.
| | - Xiao-bin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Luo Wei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Branduardi P. Synthetic Biology for Cellular Remodelling to Elicit Industrially Relevant Microbial Phenotypes. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol 2015; 214:113-4. [DOI: 10.1016/j.jbiotec.2015.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023]
|
44
|
Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol Adv 2015; 33:1091-107. [DOI: 10.1016/j.biotechadv.2014.12.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
45
|
Kang A, Lee TS. Converting Sugars to Biofuels: Ethanol and Beyond. Bioengineering (Basel) 2015; 2:184-203. [PMID: 28952477 PMCID: PMC5597089 DOI: 10.3390/bioengineering2040184] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
To date, the most significant sources of biofuels are starch- or sugarcane-based ethanol, which have been industrially produced in large quantities in the USA and Brazil, respectively. However, the ultimate goal of biofuel production is to produce fuels from lignocellulosic biomass-derived sugars with optimal fuel properties and compatibility with the existing fuel distribution infrastructure. To achieve this goal, metabolic pathways have been constructed to produce various fuel molecules that are categorized into fermentative alcohols (butanol and isobutanol), non-fermentative alcohols from 2-keto acid pathways, fatty acids-derived fuels and isoprenoid-derived fuels. This review will focus on current metabolic engineering efforts to improve the productivity and the yield of several key biofuel molecules. Strategies used in these metabolic engineering efforts can be summarized as follows: (1) identification of better enzymes; (2) flux control of intermediates and precursors; (3) elimination of competing pathways; (4) redox balance and cofactor regeneration; and (5) bypassing regulatory mechanisms. In addition to metabolic engineering approaches, host strains are optimized by improving sugar uptake and utilization, and increasing tolerance to toxic hydrolysates, metabolic intermediates and/or biofuel products.
Collapse
Affiliation(s)
- Aram Kang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA 94608, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
46
|
Role of surface intermediates in the deactivation of Mg Zr mixed oxides in acetone self-condensation: A combined DRIFT and ex situ characterization approach. J Catal 2015. [DOI: 10.1016/j.jcat.2015.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Galadima A, Muraza O. Catalytic Upgrading of Bioethanol to Fuel Grade Biobutanol: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmad Galadima
- Center of Research Excellence in Nanotechnology, ‡Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Oki Muraza
- Center of Research Excellence in Nanotechnology, ‡Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
48
|
Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2015; 2:94-121. [PMID: 28955015 PMCID: PMC5597195 DOI: 10.3390/bioengineering2020094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022] Open
Abstract
Together with other so-called “bio-plastics”, Polyhydroxyalkanoates (PHAs) are expected to soon replace established polymers on the plastic market. As a prerequisite, optimized process design is needed to make PHAs attractive in terms of costs and quality. Nowadays, large-scale PHA production relies on discontinuous fed-batch cultivation in huge bioreactors. Such processes presuppose numerous shortcomings such as nonproductive time for reactor revamping, irregular product quality, limited possibility for supply of certain carbon substrates, and, most of all, insufficient productivity. Therefore, single- and multistage continuous PHA biosynthesis is increasingly investigated for production of different types of microbial PHAs; this goes for rather crystalline, thermoplastic PHA homopolyesters as well as for highly flexible PHA copolyesters, and even blocky-structured PHAs consisting of alternating soft and hard segments. Apart from enhanced productivity and constant product quality, chemostat processes can be used to elucidate kinetics of cell growth and PHA formation under constant process conditions. Furthermore, continuous enrichment processes constitute a tool to isolate novel powerful PHA-producing microbial strains adapted to special environmental conditions. The article discusses challenges, potential and case studies for continuous PHA production, and shows up new strategies to further enhance such processes economically by developing unsterile open continuous processes combined with the application of inexpensive carbon feedstocks.
Collapse
|
49
|
Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis. PLoS One 2015; 10:e0122058. [PMID: 25807381 PMCID: PMC4373944 DOI: 10.1371/journal.pone.0122058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/24/2022] Open
Abstract
Changes in membrane lipid composition of Clostridium pasteurianum NRRL B-598 were studied during butanol fermentation by lipidomic analysis, performed by high resolution electrospray ionization tandem mass spectrometry. The highest content of plasmalogen phospholipids correlated with the highest butanol productivity, which indicated a probable role of these compounds in the complex responses of cells toward butanol stress. A difference in the ratio of saturated to unsaturated fatty acids was found between the effect of butanol produced by the cells and butanol added to the medium. A decrease in the proportion of saturated fatty acids during conventional butanol production was observed while a rise in the content of these acids appeared when butanol was added to the culture. The largest change in total plasmalogen content was observed one hour after butanol addition i.e. at the 7th hour of cultivation. When butanol is produced by bacterial cells, then the cells are not subjected to severe stress and responded to it by relatively slowly changing the content of fatty acids and plasmalogens, while after a pulse addition of external butanol (to a final non-lethal concentration of 0.5 % v/v) the cells reacted relatively quickly (within a time span of tens of minutes) by increasing the total plasmalogen content.
Collapse
|
50
|
Genome Sequence of Clostridium acetobutylicum GXAS18-1, a Novel Biobutanol Production Strain. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00033-15. [PMID: 25744989 PMCID: PMC4358376 DOI: 10.1128/genomea.00033-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clostridium acetobutylicum is an organism involved in the production of acetone and butanol by traditional acetone-butanol-ethanol fermentation (ABE). We report the draft genome sequence of C. acetobutylicum strain GXAS18-1, which can produce ABE directly from cassava flour.
Collapse
|