1
|
Wang C, Liu L, Wang T, Liu X, Peng W, Srivastav RK, Zhu XQ, Gupta N, Gasser RB, Hu M. H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Front Immunol 2022; 13:1034820. [PMID: 36405717 PMCID: PMC9667387 DOI: 10.3389/fimmu.2022.1034820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Nematodes are one of the largest groups of animals on the planet. Many of them are major pathogens of humans, animals and plants, and cause destructive diseases and socioeconomic losses worldwide. Despite their adverse impacts on human health and agriculture, nematodes can be challenging to control, because anthelmintic treatments do not prevent re-infection, and excessive treatment has led to widespread drug resistance in nematode populations. Indeed, many nematode species of livestock animals have become resistant to almost all classes of anthelmintics used. Most efforts to develop commercial anti-nematode vaccines (native or recombinant) for use in animals and humans have not succeeded, although one effective (dead) vaccine (Barbervax) has been developed to protect animals against one of the most pathogenic parasites of livestock animals – Haemonchus contortus (the barber’s pole worm). This vaccine contains native molecules, called H11 and H-Gal-GP, derived from the intestine of this blood-feeding worm. In its native form, H11 alone consistently induces high levels (75-95%) of immunoprotection in animals against disease (haemonchosis), but recombinant forms thereof do not. Here, to test the hypothesis that post-translational modification (glycosylation) of H11 plays a crucial role in achieving such high immunoprotection, we explored the N-glycoproteome and N-glycome of H11 using the high-resolution mass spectrometry and assessed the roles of N-glycosylation in protective immunity against H. contortus. Our results showed conclusively that N-glycan moieties on H11 are the dominant immunogens, which induce high IgG serum antibody levels in immunised animals, and that anti-H11 IgG antibodies can confer specific, passive immunity in naïve animals. This work provides the first detailed account of the relevance and role of protein glycosylation in protective immunity against a parasitic nematode, with important implications for the design of vaccines against metazoan parasites.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianjiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Peng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ratnesh Kumar Srivastav
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Robin B. Gasser, ; Min Hu,
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Robin B. Gasser, ; Min Hu,
| |
Collapse
|
2
|
Wang T, Ma G, Ang CS, Korhonen PK, Stroehlein AJ, Young ND, Hofmann A, Chang BCH, Williamson NA, Gasser RB. The developmental phosphoproteome of Haemonchus contortus. J Proteomics 2019; 213:103615. [PMID: 31846766 DOI: 10.1016/j.jprot.2019.103615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation plays essential roles in many cellular processes. Despite recent progress in the genomics, transcriptomics and proteomics of socioeconomically important parasitic nematodes, there is scant phosphoproteomic data to underpin molecular biological discovery. Here, using the phosphopeptide enrichment-based LC-MS/MS and data-independent acquisition (DIA) quantitation, we characterised the first developmental phosphoproteome of the parasitic nematode Haemonchus contortus - one of the most pathogenic parasites of ruminant livestock. Totally, 1804 phosphorylated proteins with 4406 phosphorylation sites ('phosphosites') from different developmental stages/sexes were identified. Bioinformatic analyses of quantified 'phosphosites' exhibited distinctive stage- and sex-specific patterns during development, and identified a subset of phosphoproteins proposed to play crucial roles in processes such as spindle positioning, signal transduction and kinase activity. A sequence-based comparison of the phosphoproteome of H. contortus with those of two free-living nematode species (Caenorhabditis elegans and Pristionchus pacificus) suggested a limited number of common protein phosphorylation events among these species. Our findings infer active roles for protein phosphorylation in the adaptation of a parasitic nematode to a constantly changing external environment. The phosphoproteomic data set for H. contortus provides a basis to better understand phosphorylation and associated biological processes (e.g., regulation of signal transduction), and might enable the discovery of novel anthelmintic targets. SIGNIFICANCE: Here, we report the first phosphoproteome for a socioeconomically parasitic nematode (Haemonchus contortus). This phosphoproteome exhibits distinctive patterns during development, suggesting active roles of post-translational modification in the parasite's adaptation to changing environments within and outside of the host animal. This work sheds a light on the developmental phosphorylation in a parasitic nematode, and could enable the discovery of novel interventions against major pathogens.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Wang T, Ma G, Ang CS, Korhonen PK, Xu R, Nie S, Koehler AV, Simpson RJ, Greening DW, Reid GE, Williamson NA, Gasser RB. Somatic proteome of Haemonchus contortus. Int J Parasitol 2019; 49:311-320. [PMID: 30771357 DOI: 10.1016/j.ijpara.2018.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Currently, there is a dearth of proteomic data to underpin fundamental investigations of parasites and parasitism at the molecular level. Here, using a high throughput LC-MS/MS-based approach, we undertook the first reported comprehensive, large-scale proteomic investigation of the barber's pole worm (Haemonchus contortus) - one of the most important parasitic nematodes of livestock animals worldwide. In total, 2487 unique H. contortus proteins representing different developmental stages/sexes (i.e. eggs, L3s and L4s, female (Af) and male (Am) adults) were identified and quantified with high confidence. Bioinformatic analyses of this proteome revealed substantial alterations in protein profiles during the life cycle, particularly in the transition from the free-living to the parasitic phase, and key groups of proteins involved specifically in feeding, digestion, metabolism, development, parasite-host interactions (including immunomodulation), structural remodelling of the body wall and adaptive processes during parasitism. This proteomic data set will facilitate future molecular, biochemical and physiological investigations of H. contortus and related nematodes, and the discovery of novel intervention targets against haemonchosis.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rong Xu
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard J Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - David W Greening
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010 Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute. The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
4
|
Sallé G, Laing R, Cotton JA, Maitland K, Martinelli A, Holroyd N, Tracey A, Berriman M, Smith WD, Newlands GFJ, Hanks E, Devaney E, Britton C. Transcriptomic profiling of nematode parasites surviving vaccine exposure. Int J Parasitol 2018. [PMID: 29534987 PMCID: PMC5909036 DOI: 10.1016/j.ijpara.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surviving Haemonchus contortus from vaccinated sheep were compared with control worms. There is no evidence for changes in expression of genes encoding Barbervax® antigens. There was increased expression of other proteases and regulators of lysosome trafficking. Surviving worms displayed up-regulated lipid storage and defecation abilities.
Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax® for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins, there is potential for selection of nematodes with altered sequences or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax® with worms from control animals. Barbervax® antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of those are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax® antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the effect of the vaccine. Implications for other potential vaccines for human and veterinary nematodes are discussed.
Collapse
Affiliation(s)
- Guillaume Sallé
- INRA - U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Centre de Recherche Val de Loire, Nouzilly, France; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom.
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Axel Martinelli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - W David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - George F J Newlands
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| |
Collapse
|
5
|
Wang C, Li F, Zhang Z, Yang X, Ahmad AA, Li X, Du A, Hu M. Recent Research Progress in China on Haemonchus contortus. Front Microbiol 2017; 8:1509. [PMID: 28883809 PMCID: PMC5574212 DOI: 10.3389/fmicb.2017.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 11/23/2022] Open
Abstract
Haemonchus contortus is one of the most important parasites of ruminants with worldwide distribution that can bring huge economic losses to the breeding industry of cattle, sheep, and goats. In recent 20 years, studies on H. contortus in China mainly focused on the epidemiology, population genetics, anthelmintic resistance, structural and functional studies of important genes regulating the development of this parasite, interaction between parasite molecules and host cells and vaccine development against haemonchosis, and achieved good progress. However, there is no systematic review about the studies by Chinese researchers on H. contortus in China. The purpose of this review is to bring together the findings from the studies on H. contortus in China in order to obtain the knowledge gained from the recent studies in China and provide foundation for identifying future research directions to establish novel diagnostic methods, discover new drug targets and vaccine candidates for use in preventing and controlling H. contortus in China.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zongze Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Awais A. Ahmad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
6
|
Emery DL, Hunt PW, Le Jambre LF. Haemonchus contortus: the then and now, and where to from here? Int J Parasitol 2016; 46:755-769. [DOI: 10.1016/j.ijpara.2016.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
|