1
|
Wang S, Maglangit F, Fang Q, Kyeremeh K, Deng H. Characterization of the Baeyer-Villiger monooxygenase in the pathway of the bacterial pyrrolizidine alkaloids, legonmycins. RSC Chem Biol 2024:d4cb00186a. [PMID: 39386343 PMCID: PMC11457151 DOI: 10.1039/d4cb00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Baeyer-Villiger monooxygenase (BVMO), LgnC, plays a crucial role in the biosynthesis of bacterial pyrrolizidine alkaloids, legonmycins. It processes bicyclic indolizidine substrates generated from the coordinative action of two non-ribosomal peptide synthetases (LgnB and LgnD) and the standalone type II thioesterase-like enzyme (LgnA). It has been demonstrated that the enzyme selectively inserts molecular oxygen into the carbon-carbon bond adjacent to the carbonyl group in legonindolizidines to form bicyclic 1,3-oxazepine carbamate intermediates. After ring opening and contraction, the most advanced products, prelegonmycins, are formed. However, factors controlling the final hydroxylation step and how the enzyme handles the substrates have remained elusive. In this study, we show that the final hydroxylation at the activated carbon of the electron-rich pyrrole system is attributed to either spontaneous oxidation or the action of an endogenous redox reagent. Substrate docking on the structural model of LgnC combined with site-directed mutagenesis allows the identification of several key amino acids that are essential for substrate/intermediate binding and a mechanism of LgnC-catalysed transformation is proposed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen Aberdeen AB24 3UE UK
| | - Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu Lahug Cebu City 6000 Philippines
| | - Qing Fang
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen Aberdeen AB24 3UE UK
| | - Kwaku Kyeremeh
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana P.O. Box LG56 Legon-Accra Ghana
| | - Hai Deng
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen Aberdeen AB24 3UE UK
| |
Collapse
|
2
|
Sakoleva T, Vesenmaier F, Koch L, Schunke JE, Novak KD, Grobe S, Dörr M, Bornscheuer UT, Bayer T. Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production. Chembiochem 2024:e202400712. [PMID: 39320950 DOI: 10.1002/cbic.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Esters are valuable aroma compounds and can be produced enzymatically by Baeyer-Villiger monooxygenases (BVMOs) from (aliphatic) ketone precursors. However, a genetically encoded biosensor system for the assessment of BVMO activity and the detection of reaction products is missing. In this work, we assembled a synthetic enzyme cascade - featuring an esterase, an alcohol dehydrogenase, and LuxAB - in the heterologous host Escherichia coli. Target esters are produced by a BVMO, subsequently cleaved, and the corresponding alcohol oxidized through the artificial pathway. Ultimately, aldehyde products are detected in vivo by LuxAB, a luciferase from Photorhabdus luminescens that emits bioluminescence upon the oxidation of aldehydes to the corresponding carboxylates. This biosensor system greatly accelerated the screening and selection of active BVMO variants from a focused library, omitting commonly used low-throughput chromatographic analysis. Engineered enzymes accepted linear aliphatic ketones such as 2-undecanone and 2-dodecanone and exhibited improved ester formation.
Collapse
Affiliation(s)
- Thaleia Sakoleva
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Florian Vesenmaier
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Lena Koch
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jarne E Schunke
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Kay D Novak
- acib GmbH, Krenngasse 37/2, 8010, Graz, Austria
| | - Sascha Grobe
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Mark Dörr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
3
|
Bunyat-Zada AR, Ducharme SE, Cleveland ME, Hoffman ER, Howe GW. Genome Mining Leads to the Identification of a Stable and Promiscuous Baeyer-Villiger Monooxygenase from a Thermophilic Microorganism. Chembiochem 2024; 25:e202400443. [PMID: 38991205 DOI: 10.1002/cbic.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are NAD(P)H-dependent flavoproteins that convert ketones to esters and lactones. While these enzymes offer an appealing alternative to traditional Baeyer-Villiger oxidations, these proteins tend to be either too unstable or exhibit too narrow of a substrate scope for implementation as industrial biocatalysts. Here, sequence similarity networks were used to search for novel BVMOs that are both stable and promiscuous. Our genome mining led to the identification of an enzyme from Chloroflexota bacterium (strain G233) dubbed ssnBVMO that exhibits i) the highest melting temperature of any naturally sourced BVMO (62.5 °C), ii) a remarkable kinetic stability across a wide range of conditions, similar to those of PAMO and PockeMO, iii) optimal catalysis at 50 °C, and iv) a broad substrate scope that includes linear aliphatic, aromatic, and sterically bulky ketones. Subsequent quantitative assays using propiophenone demonstrated >95 % conversion. Several fusions were also constructed that linked ssnBVMO to a thermostable phosphite dehydrogenase. These fusions can recycle NADPH and catalyze oxidations with sub-stoichiometric quantities of this expensive cofactor. Characterization of these fusions permitted identification of PTDH-L1-ssnBVMO as the most promising protein that could have utility as a seed sequence for enzyme engineering campaigns aiming to develop biocatalysts for Baeyer-Villiger oxidations.
Collapse
Affiliation(s)
- Amir R Bunyat-Zada
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephan E Ducharme
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maria E Cleveland
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Esther R Hoffman
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
4
|
Chen X, Wang H, Zeng J, Li Q, Zhang T, Yang Q, Tang P, Chen FE. Stereodivergent Total Synthesis of Tacaman Alkaloids. Angew Chem Int Ed Engl 2024; 63:e202407149. [PMID: 38949229 DOI: 10.1002/anie.202407149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92 % yield, 99 % ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton. Computational results revealed that hydrogen bonding was crucial in stabilizing intermediates and inducing different addition reactions during the acyl-Pictet-Spengler cyclization cascade. By strategically using these two reactions and the late-stage diversification of the functionalized indoloquinolizidine core, the asymmetric total syntheses of eight tacaman alkaloids were achieved. This study may potentially advance research related to the medicinal chemistry of tacaman alkaloids.
Collapse
Affiliation(s)
- Xiangtao Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qiuhong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tonghui Zhang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qiaoyun Yang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
5
|
Zhou J, Huang M. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Chem Soc Rev 2024; 53:8202-8239. [PMID: 38990263 DOI: 10.1039/d4cs00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
6
|
Yang G, Pećanac O, Wijma HJ, Rozeboom HJ, de Gonzalo G, Fraaije MW, Mascotti ML. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases. Cell Rep 2024; 43:114130. [PMID: 38640062 DOI: 10.1016/j.celrep.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Enzymes are crucial for the emergence and sustenance of life on earth. How they became catalytically active during their evolution is still an open question. Two opposite explanations are plausible: acquiring a mechanism in a series of discrete steps or all at once in a single evolutionary event. Here, we use molecular phylogeny, ancestral sequence reconstruction, and biochemical characterization to follow the evolution of a specialized group of flavoprotein monooxygenases, the bacterial Baeyer-Villiger monooxygenases (BVMOs). These enzymes catalyze an intricate chemical reaction relying on three different elements: a reduced nicotinamide cofactor, dioxygen, and a substrate. Characterization of ancestral BVMOs shows that the catalytic mechanism evolved in a series of steps starting from a FAD-binding protein and further acquiring reactivity and specificity toward each of the elements participating in the reaction. Together, the results of our work portray how an intrinsically complex catalytic mechanism emerged during evolution.
Collapse
Affiliation(s)
- Guang Yang
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ognjen Pećanac
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Henriëtte J Rozeboom
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
7
|
Tian J, Zhou S, Chen Y, Zhao Y, Li S, Yang P, Xu X, Chen Y, Cheng X, Yang J. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis. Chemistry 2024; 30:e202304081. [PMID: 38288909 DOI: 10.1002/chem.202304081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.
Collapse
Affiliation(s)
- Jin Tian
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yanli Chen
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yuyan Zhao
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Piao Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xianlin Xu
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| |
Collapse
|
8
|
Cárdenas-Moreno Y, González-Bacerio J, García Arellano H, Del Monte-Martínez A. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst. Biotechnol Appl Biochem 2023; 70:2108-2135. [PMID: 37753743 DOI: 10.1002/bab.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
Oxidoreductases are enzymes with distinctive characteristics that favor their use in different areas, such as agriculture, environmental management, medicine, and analytical chemistry. Among these enzymes, oxidases, dehydrogenases, peroxidases, and oxygenases are very interesting. Because their substrate diversity, they can be used in different biocatalytic processes by homogeneous and heterogeneous catalysis. Immobilization of these enzymes has favored their use in the solution of different biotechnological problems, with a notable increase in the study and optimization of this technology in the last years. In this review, the main structural and catalytical features of oxidoreductases, their substrate specificity, immobilization, and usage in biocatalytic processes, such as bioconversion, bioremediation, and biosensors obtainment, are presented.
Collapse
Affiliation(s)
- Yosberto Cárdenas-Moreno
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jorge González-Bacerio
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, Havana, Cuba
| | - Humberto García Arellano
- Department of Environmental Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University, Lerma, Mexico, Mexico
| | - Alberto Del Monte-Martínez
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| |
Collapse
|
9
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
10
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
11
|
Patsch D, Eichenberger M, Voss M, Bornscheuer UT, Buller RM. LibGENiE - A bioinformatic pipeline for the design of information-enriched enzyme libraries. Comput Struct Biotechnol J 2023; 21:4488-4496. [PMID: 37736300 PMCID: PMC10510078 DOI: 10.1016/j.csbj.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Enzymes are potent catalysts with high specificity and selectivity. To leverage nature's synthetic potential for industrial applications, various protein engineering techniques have emerged which allow to tailor the catalytic, biophysical, and molecular recognition properties of enzymes. However, the many possible ways a protein can be altered forces researchers to carefully balance between the exhaustiveness of an enzyme screening campaign and the required resources. Consequently, the optimal engineering strategy is often defined on a case-by-case basis. Strikingly, while predicting mutations that lead to an improved target function is challenging, here we show that the prediction and exclusion of deleterious mutations is a much more straightforward task as analyzed for an engineered carbonic acid anhydrase, a transaminase, a squalene-hopene cyclase and a Kemp eliminase. Combining such a pre-selection of allowed residues with advanced gene synthesis methods opens a path toward an efficient and generalizable library construction approach for protein engineering. To give researchers easy access to this methodology, we provide the website LibGENiE containing the bioinformatic tools for the library design workflow.
Collapse
Affiliation(s)
- David Patsch
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Michael Eichenberger
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Moritz Voss
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Rebecca M. Buller
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
12
|
Chánique AM, Polidori N, Sovic L, Kracher D, Assil-Companioni L, Galuska P, Parra LP, Gruber K, Kourist R. A Cold-Active Flavin-Dependent Monooxygenase from Janthinobacterium svalbardensis Unlocks Applications of Baeyer–Villiger Monooxygenases at Low Temperature. ACS Catal 2023; 13:3549-3562. [PMID: 36970468 PMCID: PMC10028610 DOI: 10.1021/acscatal.2c05160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Cold-active enzymes maintain a large part of their optimal activity at low temperatures. Therefore, they can be used to avoid side reactions and preserve heat-sensitive compounds. Baeyer-Villiger monooxygenases (BVMO) utilize molecular oxygen as a co-substrate to catalyze reactions widely employed for steroid, agrochemical, antibiotic, and pheromone production. Oxygen has been described as the rate-limiting factor for some BVMO applications, thereby hindering their efficient utilization. Considering that oxygen solubility in water increases by 40% when the temperature is decreased from 30 to 10 °C, we set out to identify and characterize a cold-active BVMO. Using genome mining in the Antarctic organism Janthinobacterium svalbardensis, a cold-active type II flavin-dependent monooxygenase (FMO) was discovered. The enzyme shows promiscuity toward NADH and NADPH and high activity between 5 and 25 °C. The enzyme catalyzes the monooxygenation and sulfoxidation of a wide range of ketones and thioesters. The high enantioselectivity in the oxidation of norcamphor (eeS = 56%, eeP > 99%, E > 200) demonstrates that the generally higher flexibility observed in the active sites of cold-active enzymes, which compensates for the lower motion at cold temperatures, does not necessarily reduce the selectivity of these enzymes. To gain a better understanding of the unique mechanistic features of type II FMOs, we determined the structure of the dimeric enzyme at 2.5 Å resolution. While the unusual N-terminal domain has been related to the catalytic properties of type II FMOs, the structure shows a SnoaL-like N-terminal domain that is not interacting directly with the active site. The active site of the enzyme is accessible only through a tunnel, with Tyr-458, Asp-217, and His-216 as catalytic residues, a combination not observed before in FMOs and BVMOs.
Collapse
Affiliation(s)
- Andrea M. Chánique
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Nakia Polidori
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Lucija Sovic
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Daniel Kracher
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Leen Assil-Companioni
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| | - Philipp Galuska
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Karl Gruber
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Robert Kourist
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| |
Collapse
|
13
|
Mansouri HR, Gracia Carmona O, Jodlbauer J, Schweiger L, Fink MJ, Breslmayr E, Laurent C, Feroz S, P. Goncalves LC, Rial DV, Mihovilovic MD, Bommarius AS, Ludwig R, Oostenbrink C, Rudroff F. Mutations Increasing Cofactor Affinity, Improve Stability and Activity of a Baeyer–Villiger Monooxygenase. ACS Catal 2022; 12:11761-11766. [PMID: 36249873 PMCID: PMC9552169 DOI: 10.1021/acscatal.2c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid R. Mansouri
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Oriol Gracia Carmona
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Lorenz Schweiger
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael J. Fink
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Erik Breslmayr
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christophe Laurent
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Saima Feroz
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Department of Biosciences, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Leticia C. P. Goncalves
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d’Azur, 28 Avenue Valrose, 06108 Nice, France
| | - Daniela V. Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Argentina
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Engineered Biosystems Building (EBB), Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, Georgia 30332, United States
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
14
|
Chawla PA, Sahu C. Baeyer–Villiger Monooxygenases (BVMOs) as Biocatalysts. SYNOPEN 2022. [DOI: 10.1055/s-0042-1751359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Abstract
Collapse
|
15
|
“Nonpolarity paving” in substrate tunnel of a Limnobacter sp. Phenylacetone monooxygenase for efficient single whole-cell synthesis of esomeprazole. Bioorg Chem 2022; 125:105867. [DOI: 10.1016/j.bioorg.2022.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
|
16
|
Tian H, Furtmann C, Lenz F, Srinivasamurthy V, Bornscheuer UT, Jose J. Enzyme cascade converting cyclohexanol into ε-caprolactone coupled with NADPH recycling using surface displayed alcohol dehydrogenase and cyclohexanone monooxygenase on E. coli. Microb Biotechnol 2022; 15:2235-2249. [PMID: 35478318 PMCID: PMC9328734 DOI: 10.1111/1751-7915.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022] Open
Abstract
The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml-1 . For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml-1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.
Collapse
Affiliation(s)
- Haijin Tian
- Institut für Pharmazeutische und Medizinische ChemiePharmaCampusWestfälische Wilhelms‐Universität MünsterCorrensstr. 48Münster48149Germany
| | - Christoph Furtmann
- Institut für Pharmazeutische und Medizinische ChemiePharmaCampusWestfälische Wilhelms‐Universität MünsterCorrensstr. 48Münster48149Germany
| | - Florian Lenz
- Institut für Pharmazeutische und Medizinische ChemiePharmaCampusWestfälische Wilhelms‐Universität MünsterCorrensstr. 48Münster48149Germany
| | - Vishnu Srinivasamurthy
- Institute of BiochemistryDepartment of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str.17489GreifswaldGermany
- Present address:
Enzymicals AGWalther‐Rathenau‐Straße 49Greifswald17489Germany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDepartment of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str.17489GreifswaldGermany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische ChemiePharmaCampusWestfälische Wilhelms‐Universität MünsterCorrensstr. 48Münster48149Germany
| |
Collapse
|
17
|
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab Eng 2022; 70:206-217. [DOI: 10.1016/j.ymben.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
|
18
|
Seo E, Kim M, Park S, Park S, Oh D, Bornscheuer U, Park J. Enzyme Access Tunnel Engineering in Baeyer‐Villiger Monooxygenases to Improve Oxidative Stability and Biocatalyst Performance. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eun‐Ji Seo
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Myeong‐Ju Kim
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - So‐Yeon Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology Sungshin Women's University Seoul 01133 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Uwe Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis Greifswald University Greifswald 17487 Germany
| | - Jin‐Byung Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
19
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
21
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
22
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
23
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
24
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
25
|
Zhang GX, You ZN, Yu JM, Liu YY, Pan J, Xu JH, Li CX. Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity. Chembiochem 2020; 22:1190-1195. [PMID: 33205522 DOI: 10.1002/cbic.202000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Indexed: 11/07/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products ("normal" and "abnormal") when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified. Furthermore, protein engineering increased the specificity constant (kcat /KM ) 8.9-fold to 484 s-1 mM-1 for 10-ketostearic acid derived from oleic acid. Consequently, by using the variant GsBVMOC308L as an efficient biocatalyst, 10-ketostearic acid was efficiently transformed into 9-(nonanoyloxy)nonanoic acid, with a space-time yield of 60.5 g L-1 d-1 . This study showed that the mutant with higher regioselectivity and catalytic efficiency could be applied to prepare medium-chain ω-hydroxy fatty acids through biotransformation of long-chain aliphatic keto acids derived from renewable plant oils.
Collapse
Affiliation(s)
- Guang-Xiang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhi-Neng You
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jia-Mei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan-Yang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
26
|
Pompei S, Grimm C, Farnberger JE, Schober L, Kroutil W. Regioselectivity of Cobalamin-Dependent Methyltransferase Can Be Tuned by Reaction Conditions and Substrate. ChemCatChem 2020; 12:5977-5983. [PMID: 33442427 PMCID: PMC7783988 DOI: 10.1002/cctc.202001296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Regioselective reactions represent a significant challenge for organic chemistry. Here the regioselective methylation of a single hydroxy group of 4-substituted catechols was investigated employing the cobalamin-dependent methyltransferase from Desulfitobacterium hafniense. Catechols substituted in position four were methylated either in meta- or para-position to the substituent depending whether the substituent was polar or apolar. While the biocatalytic cobalamin dependent methylation was meta-selective with 4-substituted catechols bearing hydrophilic groups, it was para-selective for hydrophobic substituents. Furthermore, the presence of water miscible co-solvents had a clear improving influence, whereby THF turned out to enable the formation of a single regioisomer in selected cases. Finally, it was found that also the pH led to an enhancement of regioselectivity for the cases investigated.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Judith E. Farnberger
- Austrian Centre of Industrial Biotechnologyc/o Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealthUniversity of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
27
|
Qian WZ, Ou L, Li CX, Pan J, Xu JH, Chen Q, Zheng GW. Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. Chembiochem 2020; 21:2680-2688. [PMID: 32324965 DOI: 10.1002/cbic.202000196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Indexed: 02/04/2023]
Abstract
Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDHM0 ) in the presence of large amounts of 1-phenylethanol by directed evolution. Among the resulting mutants, BmGDHM6 (Q252L/E170K/S100P/K166R/V72I/K137R) exhibited a 9.2-fold increase in tolerance against 10 % (v/v) 1-phenylethanol. Moreover, BmGDHM6 was also more stable than BmGDHM0 when exposed to hydrophobic and enzyme-inactivating compounds such as acetophenone, ethyl 2-oxo-4-phenylbutyrate, and ethyl (R)-2-hydroxy-4-phenylbutyrate. Coupled with a Candida glabrata carbonyl reductase, BmGDHM6 was successfully used for the asymmetric reduction of deactivating ethyl 2-oxo-4-phenylbutyrate with total turnover number of 1800 for the nicotinamide cofactor, thus making it attractive for commercial application. Overall, the evolution of chemically robust GDH facilitates its wider use as a general tool for NAD(P)H regeneration in biocatalysis.
Collapse
Affiliation(s)
- Wen-Zhuo Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ling Ou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
28
|
Hu Y, Xu W, Hui C, Xu J, Huang M, Lin X, Wu Q. The mutagenesis of a single site for enhancing or reversing the enantio- or regiopreference of cyclohexanone monooxygenases. Chem Commun (Camb) 2020; 56:9356-9359. [PMID: 32672300 DOI: 10.1039/d0cc03721d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mutagenesis of a "second sphere" switch residue of CHMOAcineto could control its enantio- and regiopreference. Replacing phenylalanine (F) at position 277 of CHMOAcineto into larger tryptophan (W) enabled a significant enhancement of enantio- or regioselectivity toward structurally diverse substrates, moreover, a complete reversal of enantio- or regiopreference was realized by mutating F277 into a range of smaller amino acids (A/C/D/E/G/H/I/K/L/M/N/P/Q/R/S/T/V).
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mei Z, Zhang K, Qu G, Li JK, Liu B, Ma JA, Tu R, Sun Z. High-Throughput Fluorescence Assay for Ketone Detection and Its Applications in Enzyme Mining and Protein Engineering. ACS OMEGA 2020; 5:13588-13594. [PMID: 32566823 PMCID: PMC7301380 DOI: 10.1021/acsomega.0c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Ketones are of great importance as building blocks in synthetic organic chemistry and biocatalysis. Most ketones cannot easily be quantitatively assayed due to the lack of visible photometric properties. Effective high-throughput assay (HTA) development is therefore necessary for ketone determination. Inspired by previous works of an aldehyde assay based on 2-amino benzamidoxime derivatives, we developed a colorimetric method for rapid a HTA of structurally diverse ketones by using para-methoxy-2-amino benzamidoxime (PMA). This PMA-based method is characterized by high sensitivity manner (μM) with low background, as checked by gas chromatography (GC). It can be used for quantitatively monitoring ketones by fluorescence screening in microtiter plates. Furthermore, this HTA method was employed in mining alcohol dehydrogenases (ADHs), and in directed evolution aimed at enhancing ADH activity in the catalytic transformation of alcohols to ketones. This work provides a general tool for ketone detection in biocatalyst development.
Collapse
Affiliation(s)
- Zelong Mei
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Kun Zhang
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Ge Qu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Jun-Kuan Li
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Tianjin Collaborative Innovation Center of Chemical Science and
Engineering, Tianjin University, Tianjin 300072, China
| | - Baoyan Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Jun-An Ma
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Tianjin Collaborative Innovation Center of Chemical Science and
Engineering, Tianjin University, Tianjin 300072, China
| | - Ran Tu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| |
Collapse
|
30
|
Xu N, Zhu J, Wu YQ, Zhang Y, Xia JY, Zhao Q, Lin GQ, Yu HL, Xu JH. Enzymatic Preparation of the Chiral (S)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Qi Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Ye Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Guo-Qiang Lin
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Natural Variation in the ‘Control Loop’ of BVMOAFL210 and Its Influence on Regioselectivity and Sulfoxidation. Catalysts 2020. [DOI: 10.3390/catal10030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are flavin-dependent enzymes that primarily convert ketones to esters, but can also catalyze heteroatom oxidation. Several structural studies have highlighted the importance of the ‘control loop’ in BVMOs, which adopts different conformations during catalysis. Central to the ‘control loop’ is a conserved tryptophan that has been implicated in NADP(H) binding. BVMOAFL210 from Aspergillus flavus, however, contains a threonine in the equivalent position. Here, we report the structure of BVMOAFL210 in complex with NADP+ in both the ‘open’ and ‘closed’ conformations. In neither conformation does Thr513 contact the NADP+. Although mutagenesis of Thr513 did not significantly alter the substrate scope, changes in peroxyflavin stability and reaction rates were observed. Mutation of this position also brought about changes in the regio- and enantioselectivity of the enzyme. Moreover, lower rates of overoxidation during sulfoxidation of thioanisole were also observed.
Collapse
|
32
|
Ji X, Tu J, Song Y, Zhang C, Wang L, Li Q, Ju J. A Luciferase-Like Monooxygenase and Flavin Reductase Pair AbmE2/AbmZ Catalyzes Baeyer–Villiger Oxidation in Neoabyssomicin Biosynthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqi Ji
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
33
|
Farhat W, Biundo A, Stamm A, Malmström E, Syrén P. Lactone monomers obtained by enzyme catalysis and their use in reversible thermoresponsive networks. J Appl Polym Sci 2020. [DOI: 10.1002/app.48949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wissam Farhat
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Antonino Biundo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Arne Stamm
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Eva Malmström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
| | - Per‐Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
| |
Collapse
|
34
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
36
|
Seo EJ, Kim HJ, Kim MJ, Kim JS, Park JB. Cofactor specificity engineering of a long-chain secondary alcohol dehydrogenase from Micrococcus luteus for redox-neutral biotransformation of fatty acids. Chem Commun (Camb) 2019; 55:14462-14465. [PMID: 31728457 DOI: 10.1039/c9cc06447h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Structure-based engineering of a NAD+-dependent secondary alcohol dehydrogenase from Micrococcus luteus led to a 1800-fold increase in catalytic efficiency for NADP+. Furthermore, the engineered enzymes (e.g., D37S/A38R/V39S/T15I) were successfully coupled to a NADPH-dependent Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440 for redox-neutral biotransformations of C18 fatty acids into C9 chemicals.
Collapse
Affiliation(s)
- Eun-Ji Seo
- Department of Food Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | | | | | | | | |
Collapse
|
37
|
Hu Y, Zhang Y, Xu W, Xu J, Lin X, Wu Q. Dual-Enzyme-Catalyzed Synthesis of Enantiocomplementary Polyesters. ACS Macro Lett 2019; 8:1432-1436. [PMID: 35651193 DOI: 10.1021/acsmacrolett.9b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, a series of enantiocomplementary polyesters with either (S)- or (R)-configurations were successfully prepared by applying a dual-enzyme biocatalytic system. In the step of Baeyer-Villiger oxidation, cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto) was engineered rationally to tailor the enantiopreference of mutants, providing (S)- and (R)-lactones, respectively, with high optical purities (up to 99% ee) as polymeric precursors. By subsequent enzymatic ring-opening polymerization of the enantiopure monomers, enantiocomplementary polyesters with high molecular weight (up to 21.8 kDa Mn) were synthesized by lipase CALB/MML. Our research offers an environmentally friendly synthesis route for the production of optically pure lactones and chiral polyesters, which are of particular significance for their application in organic syntheis or biomedical materials.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Weihua Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
38
|
Hu Y, Xu J, Cen Y, Li D, Zhang Y, Huang M, Lin X, Wu Q. Customizing the Enantioselectivity of a Cyclohexanone Monooxygenase by a Strategy Combining “Size‐Probes” with
in silico
Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201901200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yixin Cen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yu Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG UK
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
39
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD‐Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhiguo Wang
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He Zheng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
40
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019; 58:14499-14503. [PMID: 31423719 DOI: 10.1002/anie.201907606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Cyclohexanone monooxygenases (CHMOs) show very high catalytic specificity for natural Baeyer-Villiger (BV) reactions and promiscuous reduction reactions have not been reported to date. Wild-type CHMO from Acinetobacter sp. NCIMB 9871 was found to possess an innate, promiscuous ability to reduce an aromatic α-keto ester, but with poor yield and stereoselectivity. Structure-guided, site-directed mutagenesis drastically improved the catalytic carbonyl-reduction activity (yield up to 99 %) and stereoselectivity (ee up to 99 %), thereby converting this CHMO into a ketoreductase, which can reduce a range of differently substituted aromatic α-keto esters. The improved, promiscuous reduction activity of the mutant enzyme in comparison to the wild-type enzyme results from a decrease in the distance between the carbonyl moiety of the substrate and the hydrogen atom on N5 of the reduced flavin adenine dinucleotide (FAD) cofactor, as confirmed using docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - He Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
41
|
Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid. Metab Eng 2019; 54:137-144. [DOI: 10.1016/j.ymben.2019.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022]
|
42
|
Stamm A, Biundo A, Schmidt B, Brücher J, Lundmark S, Olsén P, Fogelström L, Malmström E, Bornscheuer UT, Syrén P. A Retro-biosynthesis-Based Route to Generate Pinene-Derived Polyesters. Chembiochem 2019; 20:1664-1671. [PMID: 30793830 PMCID: PMC6618282 DOI: 10.1002/cbic.201900046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/21/2022]
Abstract
Significantly increased production of biobased polymers is a prerequisite to replace petroleum-based materials towards reaching a circular bioeconomy. However, many renewable building blocks from wood and other plant material are not directly amenable for polymerization, due to their inert backbones and/or lack of functional group compatibility with the desired polymerization type. Based on a retro-biosynthetic analysis of polyesters, a chemoenzymatic route from (-)-α-pinene towards a verbanone-based lactone, which is further used in ring-opening polymerization, is presented. Generated pinene-derived polyesters showed elevated degradation and glass transition temperatures, compared with poly(ϵ-decalactone), which lacks a ring structure in its backbone. Semirational enzyme engineering of the cyclohexanone monooxygenase from Acinetobacter calcoaceticus enabled the biosynthesis of the key lactone intermediate for the targeted polyester. As a proof of principle, one enzyme variant identified from screening in a microtiter plate was used in biocatalytic upscaling, which afforded the bicyclic lactone in 39 % conversion in shake flask scale reactions.
Collapse
Affiliation(s)
- Arne Stamm
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- KTH Royal Institute of TechnologyScience for Life LaboratorySchool of Engineering Sciences in ChemistryBiotechnology and HealthTomtebodavägen 23Box 1031171 21 SolnaStockholmSweden
| | - Antonino Biundo
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- KTH Royal Institute of TechnologyScience for Life LaboratorySchool of Engineering Sciences in ChemistryBiotechnology and HealthTomtebodavägen 23Box 1031171 21 SolnaStockholmSweden
| | - Björn Schmidt
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- KTH Royal Institute of TechnologyScience for Life LaboratorySchool of Engineering Sciences in ChemistryBiotechnology and HealthTomtebodavägen 23Box 1031171 21 SolnaStockholmSweden
| | | | - Stefan Lundmark
- Perstorp AB, InnovationPerstorp Industrial Park284 80PerstorpSweden
| | - Peter Olsén
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
| | - Linda Fogelström
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- Wallenberg Wood Science CenterTeknikringen 56–58100 44StockholmSweden
| | - Eva Malmström
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- Wallenberg Wood Science CenterTeknikringen 56–58100 44StockholmSweden
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversität GreifswaldFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Per‐Olof Syrén
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health, Department of Fibre and Polymer TechnologyTeknikringen 56–58100 44StockholmSweden
- KTH Royal Institute of TechnologyScience for Life LaboratorySchool of Engineering Sciences in ChemistryBiotechnology and HealthTomtebodavägen 23Box 1031171 21 SolnaStockholmSweden
- KTH Royal Institute of TechnologyScience for Life LaboratorySchool of Engineering Sciences in ChemistryBiotechnology and Health, Division of Protein TechnologyTomtebodavägen 23Box 1031171 21 SolnaStockholmSweden
- Wallenberg Wood Science CenterTeknikringen 56–58100 44StockholmSweden
| |
Collapse
|
43
|
Fürst MJLJ, Boonstra M, Bandstra S, Fraaije MW. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnol Bioeng 2019; 116:2167-2177. [PMID: 31124128 PMCID: PMC6836875 DOI: 10.1002/bit.27022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/23/2022]
Abstract
Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature‐sensitive enzymes catalyzing the Baeyer–Villiger reaction, which display excellent stereo‐ and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI‐31, a substrate‐promiscuous enzyme that efficiently catalyzes the production of the nylon‐6 precursor ε‐caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein‐stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half‐life at 30°C. In contrast to the wild‐type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
| | - Marjon Boonstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Selle Bandstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Farhat W, Stamm A, Robert-Monpate M, Biundo A, Syrén PO. Biocatalysis for terpene-based polymers. ACTA ACUST UNITED AC 2019; 74:91-100. [PMID: 30789828 DOI: 10.1515/znc-2018-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Arne Stamm
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Maxime Robert-Monpate
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Antonino Biundo
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Per-Olof Syrén
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden.,Wallenberg Wood Science Center, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
45
|
Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Appl Environ Microbiol 2019; 85:AEM.00239-19. [PMID: 30926727 DOI: 10.1128/aem.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 11/20/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are an emerging class of promising biocatalysts for the oxidation of ketones to prepare corresponding esters or lactones. Although many BVMOs have been reported, the development of highly efficient enzymes for use in industrial applications is desirable. In this work, we identified a BVMO from Rhodococcus pyridinivorans (BVMORp) with a high affinity toward aliphatic methyl ketones (Km < 3.0 μM). The enzyme was highly soluble and relatively stable, with a half-life of 23 h at 30°C and pH 7.5. The most effective substrate discovered so far is 2-hexanone (k cat = 2.1 s-1; Km = 1.5 μM). Furthermore, BVMORp exhibited excellent regioselectivity toward most aliphatic ketones, preferentially forming typical (i.e., normal) products. Using the newly identified BVMORp as the catalyst, a high concentration (26.0 g/liter; 200 mM) of methyl levulinate was completely converted to methyl 3-acetoxypropionate after 4 h, with a space-time yield of 5.4 g liter-1 h-1 Thus, BVMORp is a promising biocatalyst for the synthesis of 3-hydroxypropionate from readily available biobased levulinate to replace the conventional fermentation.IMPORTANCE BVMOs are emerging as a green alternative to traditional oxidants in the BV oxidation of ketones. Although many BVMOs are discovered and used in organic synthesis, few are really applied in industry, especially in the case of aliphatic ketones. Herein, a highly soluble and relatively stable monooxygenase from Rhodococcus pyridinivorans (BVMORp) was identified with high activity and excellent regioselectivity toward most aliphatic ketones. BVMORp possesses unusually high substrate loading during the catalysis of the oxidation of biobased methyl levulinate to 3-hydroxypropionic acid derivatives. This study indicates that the synthesis of 3-hydroxypropionate from readily available biobased levulinate by BVMORp-catalyzed oxidation holds great promise to replace traditional fermentation.
Collapse
|
46
|
Expanding the substrate scope of phenylacetone monooxygenase from Thermobifida fusca towards cyclohexanone by protein engineering. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
48
|
Hu Y, Wang J, Cen Y, Zheng H, Huang M, Lin X, Wu Q. “Top” or “bottom” switches of a cyclohexanone monooxygenase controlling the enantioselectivity of the sandwiched substrate. Chem Commun (Camb) 2019; 55:2198-2201. [DOI: 10.1039/c8cc09951k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single mutation F432I/L or L435A/G remarkably reversed the (−)-selectivity of WT CHMOAcineto.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
- School of Chemistry and Chemical Engineering
| | - Jie Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Yixin Cen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - He Zheng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering
- Queen's University
- UK
| | - Xianfu Lin
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Qi Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
49
|
Fürst MJLJ, Romero E, Gómez Castellanos JR, Fraaije MW, Mattevi A. Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme. ACS Catal 2018; 8:11648-11656. [PMID: 30687578 PMCID: PMC6345240 DOI: 10.1021/acscatal.8b03793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Indexed: 01/02/2023]
Abstract
![]()
Detoxifying
enzymes such as flavin-containing monooxygenases deal
with a huge array of highly diverse xenobiotics and toxic compounds.
In addition to being of high physiological relevance, these drug-metabolizing
enzymes are useful catalysts for synthetic chemistry. Despite the
wealth of studies, the molecular basis of their relaxed substrate
selectivity remains an open question. Here, we addressed this issue
by applying a cumulative alanine mutagenesis approach to cyclohexanone
monooxygenase from Thermocrispum municipale, a flavin-dependent
Baeyer–Villiger monooxygenase which we chose as a model system
because of its pronounced thermostability and substrate promiscuity.
Simultaneous removal of up to eight noncatalytic active-site side
chains including four phenylalanines had no effect on protein folding,
thermostability, and cofactor loading. We observed a linear decrease
in activity, rather than a selectivity switch, and attributed this
to a less efficient catalytic environment in the enlarged active-site
space. Time-resolved kinetic studies confirmed this interpretation.
We also determined the crystal structure of the enzyme in complex
with a mimic of the reaction intermediate that shows an unaltered
overall protein conformation. These findings led us to propose that
this cyclohexanone monooxygenase may lack a distinct substrate selection
mechanism altogether. We speculate that the main or exclusive function
of the protein shell in promiscuous enzymes might be the stabilization
and accessibility of their very reactive catalytic intermediates.
Collapse
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | | | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| |
Collapse
|
50
|
Hollmann F, Kara S, Opperman DJ, Wang Y. Biocatalytic synthesis of lactones and lactams. Chem Asian J 2018; 13:3601-3610. [PMID: 30256534 PMCID: PMC6348383 DOI: 10.1002/asia.201801180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Indexed: 01/15/2023]
Abstract
Cyclic esters and amides (lactones and lactams) are important active ingredients and polymer building blocks. In recent years, numerous biocatalytic methods for their preparation have been developed including enzymatic and chemoenzymatic Baeyer-Villiger oxidations, oxidative lactonisation of diols, and reductive lactonisation and lactamisation of ketoesters. The current state of the art of these methods is reviewed.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering, Aarhus University, Denmark
| | | | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|