1
|
Shang S, He Y, Hu Q, Fang Y, Cheng S, Zhang CJ. Fusarium graminearum effector FgEC1 targets wheat TaGF14b protein to suppress TaRBOHD-mediated ROS production and promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2288-2303. [PMID: 39109951 DOI: 10.1111/jipb.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat globally. However, the molecular mechanisms underlying the interactions between F. graminearum and wheat remain unclear. Here, we identified a secreted effector protein, FgEC1, that is induced during wheat infection and is required for F. graminearum virulence. FgEC1 suppressed flg22- and chitin-induced callose deposition and reactive oxygen species (ROS) burst in Nicotiana benthamiana. FgEC1 directly interacts with TaGF14b, which is upregulated in wheat heads during F. graminearum infection. Overexpression of TaGF14b increases FHB resistance in wheat without compromising yield. TaGF14b interacts with NADPH oxidase respiratory burst oxidase homolog D (TaRBOHD) and protects it against degradation by the 26S proteasome. FgEC1 inhibited the interaction of TaGF14b with TaRBOHD and promoted TaRBOHD degradation, thereby reducing TaRBOHD-mediated ROS production. Our findings reveal a novel pathogenic mechanism in which a fungal pathogen acts via an effector to reduce TaRBOHD-mediated ROS production.
Collapse
Affiliation(s)
- Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
2
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Amezrou R, Ducasse A, Compain J, Lapalu N, Pitarch A, Dupont L, Confais J, Goyeau H, Kema GHJ, Croll D, Amselem J, Sanchez-Vallet A, Marcel TC. Quantitative pathogenicity and host adaptation in a fungal plant pathogen revealed by whole-genome sequencing. Nat Commun 2024; 15:1933. [PMID: 38431601 PMCID: PMC10908820 DOI: 10.1038/s41467-024-46191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.
Collapse
Affiliation(s)
- Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France.
| | - Aurélie Ducasse
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Jérôme Compain
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Anais Pitarch
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Laetitia Dupont
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Johann Confais
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Gert H J Kema
- Plant Research International B.V., Wageningen, The Netherlands
| | - Daniel Croll
- Department of Ecology and Evolution, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | | |
Collapse
|
4
|
Rai P, Prasad L, Rai PK. Fungal effectors versus defense-related genes of B. juncea and the status of resistant transgenics against fungal pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1139009. [PMID: 37360735 PMCID: PMC10285668 DOI: 10.3389/fpls.2023.1139009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Oilseed brassica has become instrumental in securing global food and nutritional security. B. juncea, colloquially known as Indian mustard, is cultivated across tropics and subtropics including Indian subcontinent. The production of Indian mustard is severely hampered by fungal pathogens which necessitates human interventions. Chemicals are often resorted to as they are quick and effective, but due to their economic and ecological unsustainability, there is a need to explore their alternatives. The B. juncea-fungal pathosystem is quite diverse as it covers broad-host range necrotrophs (Sclerotinia sclerotiorum), narrow-host range necrotrophs (Alternaria brassicae and A. brassicicola) and biotrophic oomycetes (Albugo candida and Hyaloperonospora brassica). Plants ward off fungal pathogens through two-step resistance mechanism; PTI which involves recognition of elicitors and ETI where the resistance gene (R gene) interacts with the fungal effectors. The hormonal signalling is also found to play a vital role in defense as the JA/ET pathway is initiated at the time of necrotroph infection and SA pathway is induced when the biotrophs attack plants. The review discuss the prevalence of fungal pathogens of Indian mustard and the studies conducted on effectoromics. It covers both pathogenicity conferring genes and host-specific toxins (HSTs) that can be used for a variety of purposes such as identifying cognate R genes, understanding pathogenicity and virulence mechanisms, and establishing the phylogeny of fungal pathogens. It further encompasses the studies on identifying resistant sources and characterisation of R genes/quantitative trait loci and defense-related genes identified in Brassicaceae and unrelated species which, upon introgression or overexpression, confer resistance. Finally, the studies conducted on developing resistant transgenics in Brassicaceae have been covered in which chitinase and glucanase genes are mostly used. The knowledge gained from this review can further be used for imparting resistance against major fungal pathogens.
Collapse
Affiliation(s)
- Prajjwal Rai
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Laxman Prasad
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Pramod Kumar Rai
- Division of Plant Pathology, Directorate of Rapeseed-Mustard Research, Bharatpur, India
| |
Collapse
|
5
|
Kumar N, Mukhtar MS. Ranking Plant Network Nodes Based on Their Centrality Measures. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040676. [PMID: 37190464 PMCID: PMC10137616 DOI: 10.3390/e25040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
Biological networks are often large and complex, making it difficult to accurately identify the most important nodes. Node prioritization algorithms are used to identify the most influential nodes in a biological network by considering their relationships with other nodes. These algorithms can help us understand the functioning of the network and the role of individual nodes. We developed CentralityCosDist, an algorithm that ranks nodes based on a combination of centrality measures and seed nodes. We applied this and four other algorithms to protein-protein interactions and co-expression patterns in Arabidopsis thaliana using pathogen effector targets as seed nodes. The accuracy of the algorithms was evaluated through functional enrichment analysis of the top 10 nodes identified by each algorithm. Most enriched terms were similar across algorithms, except for DIAMOnD. CentralityCosDist identified more plant-pathogen interactions and related functions and pathways compared to the other algorithms.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Hadimani S, De Britto S, Udayashankar AC, Geetha N, Nayaka CS, Ali D, Alarifi S, Ito SI, Jogaiah S. Genome-Wide Characterization of Effector Protein-Encoding Genes in Sclerospora graminicola and Its Validation in Response to Pearl Millet Downy Mildew Disease Stress. J Fungi (Basel) 2023; 9:jof9040431. [PMID: 37108886 PMCID: PMC10142805 DOI: 10.3390/jof9040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine–any amino acid–Phenylalanine–Leucine–Alanine–Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.
Collapse
Affiliation(s)
- Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Arakere C. Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Nagaraj Geetha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Chandra S. Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shin-ichi Ito
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) 671316, Kasaragod (DT), Kerala, India
- Correspondence: ; Tel.: +91-836-2779533; Fax: +91-836-2747884
| |
Collapse
|
7
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
8
|
Maximiano M, Santos L, Santos C, Aragão F, Dias S, Franco O, Mehta A. Host induced gene silencing of Sclerotinia sclerotiorum effector genes for the control of white mold. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Huang Z, Li H, Zhou Y, Bao Y, Duan Z, Wang C, Powell CA, Chen B, Zhang M, Yao W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J Fungi (Basel) 2022; 8:jof8010059. [PMID: 35049998 PMCID: PMC8780550 DOI: 10.3390/jof8010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| |
Collapse
|
10
|
Ochoa-Meza LC, Quintana-Obregón EA, Vargas-Arispuro I, Falcón-Rodríguez AB, Aispuro-Hernández E, Virgen-Ortiz JJ, Martínez-Téllez MÁ. Oligosaccharins as Elicitors of Defense Responses in Wheat. Polymers (Basel) 2021; 13:3105. [PMID: 34578006 PMCID: PMC8470072 DOI: 10.3390/polym13183105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a highly relevant crop worldwide, and like other massive crops, it is susceptible to foliar diseases, which can cause devastating losses. The current strategies to counteract wheat diseases include global monitoring of pathogens, developing resistant genetic varieties, and agrochemical applications upon diseases' appearance. However, the suitability of these strategies is far from permanent, so other alternatives based on the stimulation of the plants' systemic responses are being explored. Plants' defense mechanisms can be elicited in response to the perception of molecules mimicking the signals triggered upon the attack of phytopathogens, such as the release of plant and fungal cell wall-derived oligomers, including pectin and chitin derivatives, respectively. Among the most studied cell wall-derived bioelicitors, oligogalacturonides and oligochitosans have received considerable attention in recent years due to their ability to trigger defense responses and enhance the synthesis of antipathogenic compounds in plants. Particularly, in wheat, the application of bioelicitors induces lignification and accumulation of polyphenolic compounds and increases the gene expression of pathogenesis-related proteins, which together reduce the severity of fungal infections. Therefore, exploring the use of cell wall-derived elicitors, known as oligosaccharins, stands as an attractive option for the management of crop diseases by improving plant readiness for responding promptly to potential infections. This review explores the potential of plant- and fungal-derived oligosaccharins as a practical means to be implemented in wheat crops.
Collapse
Affiliation(s)
- Laura Celina Ochoa-Meza
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - Eber Addí Quintana-Obregón
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
| | - Irasema Vargas-Arispuro
- Coordination of Food Sciences, Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico;
| | | | - Emmanuel Aispuro-Hernández
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - José J. Virgen-Ortiz
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
- Center of Innovation and Agroalimentary Development of Michoacán (CIDAM), Morelia 58341, Michoacán, Mexico
| | - Miguel Ángel Martínez-Téllez
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| |
Collapse
|
11
|
Zhao X, Li F, Li K. The 14-3-3 proteins: regulators of plant metabolism and stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:531-539. [PMID: 33811408 DOI: 10.1111/plb.13268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The 14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in plants. Over the past decade interest in the plant 14-3-3 field has increased dramatically, mainly due to the vast number of mechanisms by which 14-3-3 proteins regulate metabolism. As this field develops, it is essential to understand the role of these proteins in metabolic and stress responses. This review summarizes current knowledge about 14-3-3 proteins in plants, including their molecular structure and function, regulatory mechanism and roles in carbon and nitrogen metabolism and stress responses. We begin with a molecular structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss the regulatory mechanisms and roles in carbon and nitrogen metabolism of 14-3-3 proteins. We conclude with a summary of the 14-3-3 response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- X Zhao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - F Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - K Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Boufleur TR, Ciampi‐Guillardi M, Tikami Í, Rogério F, Thon MR, Sukno SA, Massola Júnior NS, Baroncelli R. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:393-409. [PMID: 33609073 PMCID: PMC7938629 DOI: 10.1111/mpp.13036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is one of the most important cultivated plants worldwide as a source of protein-rich foods and animal feeds. Anthracnose, caused by different lineages of the hemibiotrophic fungus Colletotrichum, is one of the main limiting factors to soybean production. Losses due to anthracnose have been neglected, but their impact may threaten up to 50% of the grain production. TAXONOMY While C. truncatum is considered the main species associated with soybean anthracnose, recently other species have been reported as pathogenic on this host. Until now, it has not been clear whether the association of new Colletotrichum species with the disease is related to emerging species or whether it is due to the undergoing changes in the taxonomy of the genus. DISEASE SYMPTOMS Typical anthracnose symptoms are pre- and postemergence damping-off; dark, depressed, and irregular spots on cotyledons, stems, petioles, and pods; and necrotic laminar veins on leaves that can result in premature defoliation. Symptoms may evolve to pod rot, immature opening of pods, and premature germination of grains. CHALLENGES As accurate species identification of the causal agent is decisive for disease control and prevention, in this work we review the taxonomic designation of Colletotrichum isolated from soybean to understand which lineages are pathogenic on this host. We also present a comprehensive literature review of soybean anthracnose, focusing on distribution, symptomatology, epidemiology, disease management, identification, and diagnosis. We consider the knowledge emerging from population studies and comparative genomics of Colletotrichum spp. associated with soybean providing future perspectives in the identification of molecular factors involved in the pathogenicity process. USEFUL WEBSITE Updates on Colletotrichum can be found at http://www.colletotrichum.org/. All available Colletotrichum genomes on GenBank can be viewed at http://www.colletotrichum.org/genomics/.
Collapse
Affiliation(s)
- Thais R. Boufleur
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Maisa Ciampi‐Guillardi
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Ísis Tikami
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Flávia Rogério
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Michael R. Thon
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Serenella A. Sukno
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Nelson S. Massola Júnior
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Riccardo Baroncelli
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| |
Collapse
|
14
|
Li Q, Wang B, Yu J, Dou D. Pathogen-informed breeding for crop disease resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:305-311. [PMID: 33095498 DOI: 10.1111/jipb.13029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The development of durable and broad-spectrum resistance is an economical and eco-friendly approach to control crop diseases for sustainable agricultural production. Emerging knowledge of the molecular basis of pathogenesis and plant-pathogen interactions has contributed to the development of novel pathogen-informed breeding strategies beyond the limits imposed by conventional breeding. Here, we review the current status of pathogen-assisted resistance-related gene cloning. We also describe how pathogen effector proteins can be used to identify resistance resources and to inform cultivar deployment. Finally, we summarize the main approaches for pathogen-directed plant improvement, including transgenesis and genome editing. Thus, we describe the emerging role of pathogen-related studies in the breeding of disease-resistant varieties, and propose innovative pathogen-informed strategies for future applications.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
16
|
Guo Y, Dupont P, Mesarich CH, Yang B, McDougal RL, Panda P, Dijkwel P, Studholme DJ, Sambles C, Win J, Wang Y, Williams NM, Bradshaw RE. Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen Phytophthora agathidicida. MOLECULAR PLANT PATHOLOGY 2020; 21:1131-1148. [PMID: 32638523 PMCID: PMC7411639 DOI: 10.1111/mpp.12967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.
Collapse
Affiliation(s)
- Yanan Guo
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - Carl H. Mesarich
- Bio‐Protection Research CentreSchool of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Bo Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | | | - Preeti Panda
- Scion (New Zealand Forest Research Institute Ltd.)RotoruaNew Zealand
- The New Zealand Institute for Plant and Food ResearchAucklandNew Zealand
| | - Paul Dijkwel
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | | | - Joe Win
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Nari M. Williams
- Scion (New Zealand Forest Research Institute Ltd.)RotoruaNew Zealand
- The New Zealand Institute for Plant and Food ResearchAucklandNew Zealand
| | - Rosie E. Bradshaw
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
17
|
Abstract
Today, various grass species are important not only in animal feeding but, increasingly often, also in energetics and, due to esthetic and cultural values, in landscape architecture. Therefore, it is essential to establish the roles various grass species and their functional forms play in modifying soil bacteriobiome and enzymatic activity. To this end, a pot experiment was conducted to examine effects of various fodder grass and lawn grass species on the bacteriobiome and biochemical properties of soil. Nonsown soil served as the control for data interpretation. Analyses were carried out with standard and metagenomic methods. The intensity of effects elicited by grasses depended on both their species and functional form. More favorable living conditions promoting the development of soil bacteria and, thereby, enzymatic activity were offered by fodder than by lawn grass species. Among the fodder grasses, the greatest bacteriobiome diversity was caused by sowing the soil with Phleum pratense (Pp), whereas among lawn grasses in the soil sown with Poa pratensis (Pr). Among the fodder grasses, the highest enzymatic activity was determined in the soil sown with Lolium x hybridum Hausskn (Lh), and among the lawn grasses—in the soil sown with Lolium perenne. Sowing the soil with grasses caused the succession of a population of bacterial communities from r strategy to k strategy.
Collapse
|
18
|
Cheng Y, Lin Y, Cao H, Li Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020; 8:E449. [PMID: 32209982 PMCID: PMC7143998 DOI: 10.3390/microorganisms8030449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant-pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit-pathogen interactions remaining relatively unexplored compared with well-studied leaf-pathogen interactions, progress has occurred in the citrus fruit-Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Collapse
Affiliation(s)
- Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yunlong Lin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
19
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
20
|
|