1
|
Su Z, Elmahdy R, Biernat JF, Chen A, Lipkowski J. Electrocatalysis of CO 2 Reduction by Immobilized Formate Dehydrogenase without a Metal Redox Center. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16249-16257. [PMID: 39066730 DOI: 10.1021/acs.langmuir.4c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common belief, the enzyme can catalyze the electrochemical reduction of CO2 to formate without the cofactor protonated nicotinamide adenine dinucleotide. The electrochemical data indicate that the enzyme-catalyzed reduction of CO2 is diffusion-controlled and is a reversible reaction. The orientation and conformation of the enzyme were investigated by surface-enhanced infrared reflection absorption spectroscopy. The α-helix of the enzyme adopts an orientation nearly parallel to the surface, bringing its active center close to the gold surface. This orientation allows direct electron transfer between CO2 and the gold electrode. The results in this paper provide a new method for the development of enzymatic electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- ZhangFei Su
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Reem Elmahdy
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jan F Biernat
- Department of Chemistry, Gdansk University of Technology, Gdańsk 80-233, Poland
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Li A, Cao X, Fu R, Guo S, Fei Q. Biocatalysis of CO 2 and CH 4: Key enzymes and challenges. Biotechnol Adv 2024; 72:108347. [PMID: 38527656 DOI: 10.1016/j.biotechadv.2024.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO2 and CH4 as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO2 and CH4. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO2 and CH4.
Collapse
Affiliation(s)
- Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Zhu Y, Xie F, Wun TCK, Li K, Lin H, Tsoi CC, Jia H, Chai Y, Zhao Q, Lo BT, Leu S, Jia Y, Ren K, Zhang X. Bio-Inspired Microreactors Continuously Synthesize Glucose Precursor from CO 2 with an Energy Conversion Efficiency 3.3 Times of Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305629. [PMID: 38044316 PMCID: PMC10853710 DOI: 10.1002/advs.202305629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Excessive CO2 and food shortage are two grand challenges of human society. Directly converting CO2 into food materials can simultaneously alleviate both, like what green crops do in nature. Nevertheless, natural photosynthesis has a limited energy efficiency due to low activity and specificity of key enzyme D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). To enhance the efficiency, many prior studies focused on engineering the enzymes, but this study chooses to learn from the nature to design more efficient reactors. This work is original in mimicking the stacked structure of thylakoids in chloroplasts to immobilize RuBisCO in a microreactor using the layer-by-layer strategy, obtaining the continuous conversion of CO2 into glucose precursor at 1.9 nmol min-1 with enhanced activity (1.5 times), stability (≈8 times), and reusability (96% after 10 reuses) relative to the free RuBisCO. The microreactors are further scaled out from one to six in parallel and achieve the production at 15.8 nmol min-1 with an energy conversion efficiency of 3.3 times of rice, showing better performance of this artificial synthesis than NPS in terms of energy conversion efficiency. The exploration of the potential of mass production would benefit both food supply and carbon neutralization.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Fengjia Xie
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Tommy Ching Kit Wun
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Kecheng Li
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huan Lin
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Chi Chung Tsoi
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huaping Jia
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yao Chai
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Benedict Tsz‐woon Lo
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Shao‐Yuan Leu
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yanwei Jia
- State‐Key Laboratory of Analog and Mixed‐Signal VLSI, Institute of MicroelectronicsFaculty of Science and Technology – ECEFaculty of Health Sciencesand MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau999078China
| | - Kangning Ren
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
| | - Xuming Zhang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| |
Collapse
|
4
|
Shi HL, Yuan SW, Xi XQ, Xie YL, Yue C, Zhang YJ, Yao LG, Xue C, Tang CD. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate. World J Microbiol Biotechnol 2023; 39:352. [PMID: 37864750 DOI: 10.1007/s11274-023-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 10/23/2023]
Abstract
Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.
Collapse
Affiliation(s)
- Hong-Ling Shi
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Shu-Wei Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 Jianshe East Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiao-Qi Xi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Chao Yue
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Ying-Jun Zhang
- Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China.
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| |
Collapse
|
5
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
8
|
Liao Q, Guo M, Mao M, Gao R, Meng Z, Fan X, Liu W. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
9
|
Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts 2022. [DOI: 10.3390/catal13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
(S)-1-chloro-2-heptanol is an enantiopure chemical of great value that can synthesize Treprostinil for treating primary pulmonary hypertension. In this work, a new strain B-36, capable of asymmetric reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol, was screened and identified as Curvularia hominis B-36 (CCTCC M 2017654) based on the morphological and internally transcribed spacer (ITS) sequence. The reductive capacity of Curvularia hominis B-36 was investigated as a whole-cell biocatalyst in the bioreduction, and the excellent yield (97.2%) and enantiomeric excess (ee) value (99.9%) were achieved under the optimal conditions as follows: 75 mM 1-chloro-2-heptanone, K2HPO4-KH2PO4 (100 mM, pH 6.0), 50 g L−1 resting cells (dry cell weight; DCW), 15% (v/v) isopropanol as co-substrate, 200 rpm, 30 °C, 20 h. The scaled-up biocatalytic process was accomplished at a bioreactor in a 1.5 L working volume, showing superb yield (~97%) and selectivity (99.9%). The product (S)-1-chloro-2-heptanol was purified and characterized by NMR. Curvularia hominis B-36 is a novel catalyst and the asymmetric synthesis route is benign and eco-friendly.
Collapse
|