1
|
Sun P, Zhou Y, Qiu T, Peng J. Copper formate-lysine nanoparticles with polyphenol oxidase-like activity for the detection of epinephrine. Anal Bioanal Chem 2024; 416:6057-6066. [PMID: 38085339 DOI: 10.1007/s00216-023-05095-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 10/26/2024]
Abstract
Laccase is an enzyme known for its eco-friendly uses in environmental cleanup and biotechnology. However, it has limitations such as low stability, high cost, and complex recycling. So, there is a need for laccase mimics that can effectively imitate its properties. Herein, we created copper formate-lysine nanoparticles (Cuf-Lys) that mimic laccase's activity. The developed Cuf-Lys demonstrated remarkable polyphenol oxidase-like activity, stability, and recyclability, making them suitable for the fabrication of efficient colorimetric sensors for the detection of epinephrine. These sensors had a specific response and could accurately measure epinephrine concentrations ranging from 2.5 to 50 μM, with a detection limit as low as 1 μM. Furthermore, the biosensor demonstrated high sensitivity and selectivity when applied to the detection of rutin. The limit of detection for rutin was determined to be 0.16 μM while in the linear concentration range of 0.25 to 150.0 μM. We believe that Cuf-Lys provide a new route for the design of laccase mimics, showing potential applications for biomedical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
2
|
Singh S, Yadav P, Yadav KS. A novel diglycosidase for the transformation of naringin to naringenin and neohesperidose. Int J Biol Macromol 2024; 280:135744. [PMID: 39304037 DOI: 10.1016/j.ijbiomac.2024.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A novel fungal diglycosidase that transforms naringin into naringenin and neohesperidose, a rare biotransformation, has been purified to homogeneity using a simple procedure involving precipitation of the enzyme from the culture filtrate of the fungal strain using 80 % saturation of ammonium sulphate, dissolving the precipitate in minimum volume of the buffer and dialysing that against the buffer. The purified enzyme gives single protein bands of molecular mass 64.6 kDa in SDS-PAGE analysis. The purity of the enzyme has been further confirmed by the appearance of single protein band in native page analysis. Using naringin as the substrate, the diglycosidase has Km and kcat values of 0.20 m mol L-1 and 0.66 s-1, respectively, at pH 4.0 and 313 K. The specific activity of the purified enzyme using naringin as the natural substrate is 1.018 katal/kg. The diglycosidase also transforms rutin into quercetin and rutinose but has no effect on hesperidin. The feasibilities of preparing neohesperidose from naringin and rutinose from rutin on milligram scales using the pure enzyme have been demonstrated. These results open the way for developing an enzymatic process for preparation of neohesperidose from naringin. The reported diglycosidase has immense future applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shikha Singh
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, U. P. 273009, India
| | - Pratibha Yadav
- Centre for Rural Development and Technology, IIT Delhi, Hauz Khas, New Delhi, India, 110016
| | - Kamlesh Singh Yadav
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, U. P. 273009, India.
| |
Collapse
|
3
|
Cui Y, Riley M, Moreno MV, Cepeda MM, Perez IA, Wen Y, Lim LX, Andre E, Nguyen A, Liu C, Lerno L, Nichols PK, Schmitz H, Tagkopoulos I, Kennedy JA, Oberholster A, Siegel JB. Discovery of Potent Glycosidases Enables Quantification of Smoke-Derived Phenolic Glycosides through Enzymatic Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11617-11628. [PMID: 38728580 PMCID: PMC11117406 DOI: 10.1021/acs.jafc.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.
Collapse
Affiliation(s)
- Youtian Cui
- Genome
Center, University of California, Davis, California 95616, United States
- VinZymes,
LLC, Davis, California 95616, United States
| | - Mary Riley
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
| | - Marcus V. Moreno
- Genome
Center, University of California, Davis, California 95616, United States
| | - Mateo M. Cepeda
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ignacio Arias Perez
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Yan Wen
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Lik Xian Lim
- Department
of Food Science & Technology, University
of California, Davis, California 95616, United States
- UC Davis
Coffee Center, University of California, Davis, California 95616, United States
| | - Eric Andre
- Genome
Center, University of California, Davis, California 95616, United States
| | - An Nguyen
- Genome
Center, University of California, Davis, California 95616, United States
| | - Cody Liu
- Genome
Center, University of California, Davis, California 95616, United States
| | - Larry Lerno
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
- Food
Safety and Measurement Facility, University
of California, Davis, California 95616, United States
| | | | - Harold Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate School of Management, University
of California, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- Genome
Center, University of California, Davis, California 95616, United States
- Department of Computer Science, USDA/NSF
AI Institute for Next Generation
Food Systems (AIFS), University of California, Davis, California 95616, United States
- PIPA, LLC, Davis, California 95616, United States
| | | | - Anita Oberholster
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Justin B. Siegel
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Department of Biochemistry and Molecular
Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Weiz G, González AL, Mansilla IS, Fernandez-Zapico ME, Molejón MI, Breccia JD. Rutinosides-derived from Sarocladium strictum 6-O-α-rhamnosyl-β-glucosidase show enhanced anti-tumoral activity in pancreatic cancer cells. Microb Cell Fact 2024; 23:133. [PMID: 38720294 PMCID: PMC11077868 DOI: 10.1186/s12934-024-02395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-β-glucosidase (αRβG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRβG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS αRβG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| | - Alina L González
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Iara S Mansilla
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Martín E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - María I Molejón
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| |
Collapse
|
5
|
Singh BN, Tabatabaei M, Pandit A, Elling L, Gupta VK. Emerging advances in glycoengineering of carbohydrates/glycans and their industrial applications. Biotechnol Adv 2024; 72:108324. [PMID: 38360155 DOI: 10.1016/j.biotechadv.2024.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Vijai Kumar Gupta
- School of Biotechnology, Dublin City University, Glasnevin, Dublin D09 K20V, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin D09 K20V, Ireland.
| |
Collapse
|