1
|
Li X, Yuan Y, Dang P, Li BL, Huang Y, Li W, Zhang M, Shi M, Shen Z, Xie L. Effect of salinity stress on nitrogen and sulfur removal performance of short-cut sulfur autotrophic denitrification and anammox coupling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162982. [PMID: 36958564 DOI: 10.1016/j.scitotenv.2023.162982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
The effects of salinity on anaerobic nitrogen and sulfide removal were investigated in a coupled anammox and short-cut sulfur autotrophic denitrification (SSADN) system. The results revealed that salinity had significant nonlinear effects on the nitrogen and sulfur transformations in the coupled system. When the salinity was <2 %, the anammox and SSADN activities increased with increasing salinity, and the total nitrogen removal rate, S0 production rate, and nitrite production rate were 0.41 kg/(m3·d), 0.37 kg/(m3·d), and 0.28 kg/(m3·d), respectively. With continuous increase of salinity, the performances of the anammox and SSADN gradually decreased, and the three indicators decreased to 0.14 kg/(m3·d), 0.22 kg/(m3·d), and 0.14 kg/(m3·d) at 5 % salinity, respectively. When the salinity reached 5 %, the nitrogen removal contribution of anammox decreased to 68.4 %, while the contribution of the sulfur autotrophic denitrification increased to 31.6 %. The coupled system recovered in a short time after alleviation of the salinity stress, and the SSADN activity recovery was faster than anammox. The microbial community structure and functional microbial abundance in the coupled system changed significantly with increasing salinity, and the functional microbial abundance after recovery was considerably different from the initial state.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Pengze Dang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miao Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziqi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Linyan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Bacterial Communities in a Gradient of Abiotic Factors Near a Sulfide Thermal Spring in Northern Baikal. DIVERSITY 2023. [DOI: 10.3390/d15020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The structure and diversity of microbial communities developing in the combined gradient of temperature (44–19 °C), as well as concentration of oxygen (0–10 mg/L) and hydrogen sulfide (33–0.7 mg/L), were studied in the thermal sulfide spring on the coast of Northern Lake Baikal. The predominance of bacteria participating in sulfur and nitrogen cycles and significant changes in the composition of microbial communities were noted at changing physicochemical conditions. Thiovirga sp. (sulfur-oxidizing bacteria, up to 37%) and Azonexus sp. (nitrogen-fixing bacteria, up to 43%) were dominant at high temperatures and concentrations of hydrogen sulfide in two hydrotherms. In addition, a significant contribution of the Rhodocyclaceae family (up to 51%) which is involved in the denitrification processes, and Acetoanaerobium sp. (up to 20%) fixing carbon oxide were found in the spring water. In the stream, mainly oxygenic cyanobacteria (up to 56%) developed at a temperature of 33 °C, in the presence of hydrogen sulfide and oxygen. In addition, sulfur bacteria of the genus Thiothrix (up to 48%) found in epibiotic communities of benthic animals of Lake Baikal were present here. Thiothrix sp. formed massive fouling in the zone of mixing lake and thermal waters with a significant contribution of hydrogen-oxidizing bacteria of the genus Hydrogenophaga (up to 22.5%). As well as chemolitho- and phototrophic bacteria, chemoorganotrophs (phyla Firmicutes, Chloroflexi, Desulfobacterota, Nitrospirota, Fibrobacterota, etc.) have been identified in all communities. The chemical parameters of water in spring and coastal zones indicate a significant change in the composition of thermal waters occurring with the participation of diverse microbial communities that contribute to the assimilation of inorganic components of mineral thermal waters.
Collapse
|
3
|
Clagnan E, D'Imporzano G, Dell'Orto M, Sanchez-Zurano A, Acién-Fernandez FG, Pietrangeli B, Adani F. Profiling microalgal cultures growing on municipal wastewater and fertilizer media in raceway photobioreactors. BIORESOURCE TECHNOLOGY 2022; 360:127619. [PMID: 35842066 DOI: 10.1016/j.biortech.2022.127619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Microalgae cultivation is proposed as an effective system for pathogens reduction and wastewater depuration, however, a full characterisation of the risks is still needed. Two raceways were inoculated with Scenedesmus, one using wastewater and the other using a fertilizer medium. Microbial community and pathogen presence were explored by next generation sequencing (NGS), commercial qPCR array and plate counts. These methods proved to be complementary for a full characterization of community structure and potential risks. Media and sampling locations contributed to shape communities and pathogenic loads. The main pathogenic genera detected were Arcobacter and Elizabethkingia (mainly in wastewater) with an important presence of Aeromonas (all samples). A lower presence of pathogens was detected in fertilizer samples, while wastewater showed a reduction from inlet to outlet. Raceways showed potential as an effective biotreatment, with most of the retained pathogens released in the outlet and only a minor part settled in the biomass.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Marta Dell'Orto
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ana Sanchez-Zurano
- Department of Chemical Engineering, University of Almeria, CIESOL Solar Energy Research Centre, 04120 Almeria, Spain
| | | | - Biancamaria Pietrangeli
- Inail, Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti ed Insediamenti Antropici, Via R. Ferruzzi, 38/40, 00143 Roma, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
4
|
Response of the reactor performances and bacterial communities to the evolution of sulfide-based mixotrophic denitrification processes from nitrate-type to nitrite-type. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Wang JJ, Huang BC, Li J, Jin RC. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Tran P T, Hatamoto M, Tsuba D, Watari T, Yamaguchi T. Positive impact of a reducing agent on autotrophic nitrogen removal process and nexus of nitrous oxide emission in an anaerobic downflow hanging sponge reactor. CHEMOSPHERE 2020; 256:126952. [PMID: 32428737 DOI: 10.1016/j.chemosphere.2020.126952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The adjustment of hydraulic retention time (HRT) and the supplement of titanium(III) nitrilotriacetate (Ti(III)-NTA) as a reducing agent were implemented in an anaerobic downflow hanging sponge (DHS) reactor with the aims to (i) improve nitrogen removal performance and to (ii) eliminate N2O emission. A laboratory-scale DHS reactor was operated at 35 °C, under autotrophic denitrification conditions with methane gas (14.2 L d-1) as the main carbon source, NaNO3 and NaNO2 (20 mg N L-1 per compound) as nitrogen sources. The sufficient HRT for simultaneously removing nitrate and nitrite in this reactor was found at 12 h when HRT was reduced from 24 to 6 h. Then at the HRT of 12 h, the addition of Ti(III)-NTA at a final concentration of 25 μM Ti(III) boosted the reactor's nitrogen removal rates from 1.4 ± 0.6 to 4.1 ± 1.9 g NO3--N m-3 d-1 and 3.2 ± 2.8 to 6.6 ± 3.3 g NO2--N m-3 d-1. Furthermore, this study is the first to consider the N2O emission in a continuous reactor applying denitrification coupled to anaerobic methane oxidation (DAMO) process. Produced N2O in this DHS reactor was from 10.6 × 10-4% to 89.0 × 10-4% of removed NOx- without Ti(III)-NTA and from 0.7 × 10-4% to 61.4 × 10-4% of removed NOx- with Ti(III)-NTA. Overall, these findings suggested the advantage of Ti(III)-NTA as an oxygen scavenger for denitrification processes and the potential of the anaerobic DHS reactor for facilitating the DAMO processes and mitigating N2O gas.
Collapse
Affiliation(s)
- Thao Tran P
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Daisuke Tsuba
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| |
Collapse
|
7
|
Chen M, Zhou X, Chen X, Cai Q, Zeng RJ, Zhou S. Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. WATER RESEARCH 2020; 172:115501. [PMID: 31954933 DOI: 10.1016/j.watres.2020.115501] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Photoelectrotrophic denitrification (PEDeN) using bio-hybrids has the potential to remove nitrate (NO3-) from wastewater in an economical and sustainable way. As a gas of global concern, the mechanisms of nitrous oxide (N2O) emissions during this novel process remain unclear. Herein, a self-photosensitized bio-hybrid, i. e., Thiobacillus denitrificans-cadmium sulfide, was constructed and the factors affecting N2O emissions during PEDeN by the bio-hybrids were investigated. The system was sensitive to the input NO3--N and NO2--N, resulting in changes in the N2O/(N2+N2O) ratio from 1% to 95%. In addition to free nitrous acid (FNA), reactive oxidative species (ROS) were a unique factor affecting N2O emission during PEDeN. Importantly, the N2O reduction step exhibited greater susceptibility to the ROS than nitrate reduction step. The contributions of hydrogen peroxide (H2O2), superoxides (O2-•), hydroxyl radicals (•OH) and FNA to the inhibition of N2O reduction were >15.0%, >5.4%, 1.3%, and <70.2%, respectively for a reduction of 13.5 mg/L NO3--N. A significant down-regulation of the relative transcription of the gene nosZ demonstrated that the inhibition of N2O reductase occurred at the gene level. This finding has important implications not only for mitigating N2O emissions during the PEDeN process but also for encouraging a reexamination process of N2O emissions in nature, particularly in systems in which ROS are present during the denitrification process.
Collapse
Affiliation(s)
- Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaofang Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiangyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quanhua Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
8
|
Cui YX, Biswal BK, van Loosdrecht MCM, Chen GH, Wu D. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. WATER RESEARCH 2019; 166:115038. [PMID: 31505308 DOI: 10.1016/j.watres.2019.115038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Sulfide-oxidizing autotrophic denitrification (SOAD) implemented in a moving-bed biofilm reactor (MBBR) is a promising alternative to conventional heterotrophic denitrification in mainstream biological nitrogen removal. The sulfide-oxidation intermediate - elemental sulfur - is crucial for the kinetic and microbial properties of the sulfur-oxidizing bacterial communities, but its role is yet to be studied in depth. Hence, to investigate the performance and microbial communities of the aforementioned new biosystem, we operated for a long term a laboratory-scale (700 d) SOAD MBBR to treat synthetic saline domestic sewage, with an increase of the surface loading rate from 8 to 50 mg N/(m2·h) achieved by shortening the hydraulic retention time from 12 h to 2 h. The specific reaction rates of the reactor were eventually increased up to 0.37 kg N/(m3·d) and 0.73 kg S/(m3·d) for nitrate reduction and sulfide oxidation with no significant sulfur elemental accumulation. Two sulfur-oxidizing bacterial (SOB) clades, Sox-independent SOB (SOBI) and Sox-dependent SOB (SOBII), were responsible for indirect two-step sulfur oxidation (S2-→S0→SO42-) and direct one-step sulfur oxidation (S2-→SO42-), respectively. The SOBII biomass-specific electron transfer capacity could be around 2.5 times greater than that of SOBI (38 mmol e-/(gSOBII·d) versus 15 mmol e-/(gSOBI·d)), possibly resulting in the selection of SOBII over SOBI under stress conditions (such as a shorter HRT). Further studies on the methods and mechanism of selecting of SOBII over SOBI in biofilm reactors are recommended. Overall, the findings shed light on the design and operation of MBBR-based SOAD processes for mainstream biological denitrification.
Collapse
Affiliation(s)
- Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China
| | | | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|