1
|
Chen KY, Cheng CJ, Chang YT, Lin YH, Huang YH, Lin SY, Wang LC, Jhan KY, Chiu CH. Benzaldehyde stimulates autophagy via the sonic hedgehog signaling pathway in mouse brain astrocytes after treatment with Angiostrongylus cantonensis excretory-secretory products. Int J Parasitol Drugs Drug Resist 2024; 26:100560. [PMID: 39146602 PMCID: PMC11372845 DOI: 10.1016/j.ijpddr.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode Angiostrongylus cantonensis and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in A. cantonensis-infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after A. cantonensis infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in A. cantonensis-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in A. cantonensis excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yuan-Ting Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Hsuan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Hao Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| |
Collapse
|
2
|
Zhai FH, Yan MQ, Wang Y. Extraction optimization, identification using UPLC-tandem mass spectrometry, and antioxidant properties of polyphenols from the fruit body of Morchella sextelata. J Food Sci 2024; 89:9214-9229. [PMID: 39592269 DOI: 10.1111/1750-3841.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Polyphenols, as important active ingredients in edible fungi, have many beneficial functions. As rare edible fungi, Morchella spp., are highly popular due to their nutritional value and unique flavor. However, most Morchella have not yet been artificially cultivated due to their special biological characteristics, resulting in limited research on polyphenols in artificially cultivated Morchella. In this study, the extraction parameters of polyphenols from artificially cultivated Morchella sextelata were optimized using response surface methodology, the polyphenol components were analyzed via UPLC‒tandem mass spectrometry, and their antioxidant properties were determined in vitro. The optimal extraction process parameters were as follows: ethanol concentration, 43%; solid‒liquid ratio, 1:41 g mL-1; extraction temperature, 52°C; extraction time, 2 h; rotation speed, 180 r min-1; and extraction frequency, twice. The optimized extraction parameters resulted in a polyphenol yield of 4.82 mg g-1, a 69.97% increase. Fourteen phenolic compounds were identified: gallic acid, protocatechuic acid, dl-4-hydroxyphenyllactic acid, methyl 2,4-dihydroxyphenylacetate, salicylic acid, 4-hydroxybenzaldehyde, 4-hydroxyacetophenone, eucommiol, luteolin, ethylparaben, hinokiflavone, amentoflavone, propyl 4-hydroxybenzoate, and 2,6-di-tert-butylphenol. The EC50 values of 1,1-diphenyl-2-picrylhydrazyl (DPPH)· scavenging ability, reducing power and ferrous ion chelating ability of polyphenols were 2.70, 30.98, and 72.06 µg mL-1, respectively. These findings indicated that polyphenols had a significantly stronger ability to scavenge DPPH· compared with their reducing power and ability to chelate ferrous ions. The results of this study provide a solid foundation for the subsequent study of function of M. sextelata polyphenols as well as a theoretical basis for the further development and utilization of M. sextelata, which will help promote healthy development of Morchella industry. PRACTICAL APPLICATION: The extraction, composition, and antioxidant properties of polyphenols from Morchella sextelata were identified, which provides a theoretical basis for better utilization of Morchella resources.
Collapse
Affiliation(s)
- Fei-Hong Zhai
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, China
| | - Miao-Qing Yan
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yan Wang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| |
Collapse
|
3
|
Viteri R, Espinoza F, Cornejo X, Simirgiotis MJ, Manzano P. Phytochemical profiling, antioxidant, enzymatic inhibitory, and antibacterial activities of Wigandia ecuadorensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1481447. [PMID: 39574448 PMCID: PMC11578724 DOI: 10.3389/fpls.2024.1481447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Wigandia ecuadoriensis, a member of the Namaceae family, is a source of metabolites and has been traditionally used as an anti-inflammatory. This work aimed to determine the total phenolic content (TPC), total flavonoid content (TFC), antioxidant effect, inhibition of α-glucosidase and cholinesterase enzymes (AChE, BChE), and antibacterial activity of the methanolic extract (ME) and subfractions of Wigandia ecuadoriensis. The findings revealed that ME and its subfractions exhibited significant antioxidant capacity, with the ethyl acetate fraction being the most active, displaying an IC50 of 17.66 µg/mL against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 10.31 µg/mL against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This activity was attributed to its high total phenolic content (357.47 mg GAE/g). Furthermore, W. ecuadoriensis fractions showed marked antimicrobial properties against human pathogen strains with Minimum Bactericidal Concentration (MBC) values of 1.56-6.25 mg/mL for S. aureus, E. faecalis and E. coli. Furthermore, aqueous fraction exhibited slight inhibition of acetylcholinesterase (IC50: 915.98 µg/mL) and butyrylcholinesterase (IC50: 380.42 µg/mL). Interestingly, EF showed the greatest inhibitory effect of α-glucosidase (IC50: 38.44 µg/mL) which is more potent than the control used, acarbose (IC50: 179.07 µg/mL). UHPLC-QTOF-MS analysis identified forty compounds, including phenolic acids, flavonoids, saponins, terpenes, and fatty acyls. As far as we know, this is the first study to evaluate the chemical composition and biological potential of W. ecuadoriensis. Our results provide the first evidence to the chemical knowledge of the species W. ecuadoriensis and demonstrate its bioactive potential as an interesting source of secondary metabolites with possible beneficial properties for health.
Collapse
Affiliation(s)
- Rafael Viteri
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Fernando Espinoza
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Xavier Cornejo
- Herbario GUAY, Departamento de Botánica, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia Manzano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
4
|
Wu T, Liu P, Wu J, Jiang Y, Zhou N, Zhang Y, Xu Q, Zhang Y. Broiler Spaghetti Meat Abnormalities: Muscle Characteristics and Metabolomic Profiles. Animals (Basel) 2024; 14:1236. [PMID: 38672384 PMCID: PMC11047362 DOI: 10.3390/ani14081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Spaghetti meat (SM) is a newly identified muscle abnormality that significantly affects modern broiler chickens, consequently exerting a substantial economic impact on the poultry industry worldwide. However, investigations into the meat quality and the underlying causative factors of SM in broilers remain limited. Therefore, this study was undertaken to systematically evaluate meat quality and muscle fiber characteristics of SM-affected meat. To elucidate the disparities between SM-affected and normal (NO) muscles in broiler chickens reared under identical conditions, we selected 18 SM-affected breast tissues and 18 NO breast tissues from 200 broiler chickens raised according to commercial standards under the same conditions for our study. The results showed that compared with the NO group, the muscle surface of the SM group lost integrity, similar to strip and paste. The brightness and yellowness values were significantly higher than those of the NO group. On the contrary, the shear force and protein were significantly lower in the SM group. Microscopic examination revealed that the muscle fibers in the SM group were lysed, necrotic, and separated from each other, with a large number of neutrophils diffusely distributed on the sarcolemma and endometrium. Thirty-five significantly different metabolites were observed in the breast muscles between both groups. Among them, the top differential metabolites-14,15-DiHETrE, isotretinoin, L-malic acid, and acetylcysteine-were mainly enriched in lipid metabolism and inflammatory pathways, including linoleic acid, arachidonic acid, phenylalanine, and histidine metabolism. Overall, these findings not only offer new insights into the meat quality and fiber traits of SM but also contribute to the understanding of potential mechanisms and nutritional regulators for SM myopathy.
Collapse
Affiliation(s)
- Teng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Pingping Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
| | - Jia Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Youluan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
| | - Ning Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Yu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (P.L.); (J.W.); (Y.J.); (N.Z.); (Y.Z.); (Q.X.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| |
Collapse
|
5
|
Chen KY, Cheng CJ, Chen YJ, Chiu CH, Wang LC. Protective effect of benzaldehyde combined with albendazole against brain injury induced by Angiostrongylus cantonensis infection in mice. Int J Antimicrob Agents 2023; 62:106963. [PMID: 37666435 DOI: 10.1016/j.ijantimicag.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Angiostrongylus cantonensis, also known as rat lungworm, is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis and eosinophilic meningoencephalitis, in humans. At present, the therapeutic strategy for cerebral angiostrongyliasis remains controversial. Benzaldehyde, an important bioactive constituent of Gastrodia elata (Tianma), reduces oxidative stress by inhibiting the production of reactive oxygen species. This study aimed to evaluate the therapeutic effect of benzaldehyde in combination with albendazole on angiostrongyliasis in animal models. First, the data from body weight monitoring and behavioural analyses demonstrated that benzaldehyde improved body weight and cognitive function changes after A. cantonensis infection. Next, blood‒brain barrier breakdown and pathological changes were reduced after benzaldehyde and albendazole treatment in BALB/c mice infected with A. cantonensis. Subsequently, four RNA-seq datasets were established from mouse brains that had undergone different treatments: normal, infection, infection + albendazole, and infection + albendazole + 3-hydroxybenzaldehyde groups. Ultimately, benzaldehyde was found to regulate cell apoptosis, oxidative stress and Sonic Hedgehog signalling in mouse brains infected with A. cantonensis. This study evaluated the therapeutic effect of benzaldehyde on angiostrongyliasis, and provided a potential therapeutic strategy for human angiostrongyliasis in the clinical setting. Moreover, the molecular mechanism of benzaldehyde in mouse brains infected with A. cantonensis was elucidated.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. The therapeutic effect of tanshinone IIA in mouse astrocytes after treatment with Angiostrongylus cantonensis fifth-stage larval excretory-secretory products. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:853-862. [PMID: 37147244 DOI: 10.1016/j.jmii.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are valuable targets for studying host-parasite relationships. ESPs are composed of a variety of molecules that are used to penetrate defensive barriers and avoid immune attack of the host. Tanshinone IIA (TSIIA) is a vasoactive cardioprotective drug that is widely used in studies evaluating potential therapeutic mechanisms. In this study, we will evaluate the therapeutic effects of TSIIA in mouse astrocytes after A. cantonensis fifth-stage larvae (L5) ESPs treatment. METHODS Here, we examined the therapeutic effect of TSIIA by real-time qPCR, western blotting, activity assay, and cell viability assays. RESULTS First, the results showed that TSIIA can elevate cell viability in astrocytes after stimulation with ESPs. On the other hand, TSIIA downregulated the expression of apoptosis-related molecules. However, the expression of molecules related to antioxidant, autophagy, and endoplasmic reticulum stress was significantly increased. The results of antioxidant activation assays showed that the activities of superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase were significantly increased. Finally, we found that cell apoptosis and oxidative stress were reduced in TSIIA-treated astrocytes by immunofluorescence staining. CONCLUSION The findings from this study suggest that TSIIA can reduce cellular damage caused by A. cantonensis L5 ESPs in astrocytes and clarify the related molecular mechanisms.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan.
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Nowak P, Sikorski A. Structural diversity of cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde. RSC Adv 2023; 13:20105-20112. [PMID: 37409037 PMCID: PMC10318855 DOI: 10.1039/d3ra02300a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde (1) and 4-hydroxybenzaldehyde (2) were synthesized and structurally characterized. Single-crystal X-ray diffraction measurements show that compound 1 crystallizes in the triclinic P1̄ space group, whereas compound 2 crystallizes in the monoclinic P21/n space group. In the crystals of title compounds, the molecules interact via O-H⋯N and C-H⋯O hydrogen bonds, and C-H⋯π and π-π interactions. DCS/TG measurements indicate that compound 1 melts at a lower temperature than the separate cocrystal coformers, whereas compound 2 melts at a higher temperature than acridine but at a lower temperature than 4-hydroxybenzaldehyde. The FTIR measurements reveal that the band attributed to the stretching vibrations of the hydroxyl group of hydroxybenzaldehyde disappeared, but several bands appeared in the range of 3000-2000 cm-1.
Collapse
Affiliation(s)
- Patryk Nowak
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| |
Collapse
|
8
|
Chen T, Tang Z, Liang D, Huang Y, Yin X. An investigation on 3-hydroxybenzaldehyde for exploring terahertz low-frequency vibration modes with quasi-harmonic approximation method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122046. [PMID: 36334415 DOI: 10.1016/j.saa.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/04/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
3-Hydroxybenzaldehyde (3-HBA) was investigated in the range of 0.6-2.8 THz by terahertz time-domain spectroscopy (THz-TDS) and solid-state density functional theory (ss-DFT) with first-principles calculation. Four distinct peaks were found respectively, and among them, the intensity disparity between experiment and simulation spectra at 2.04 THz was recognized as the biggest inconsistency. Considering thermal behavior can be responsible for this, quasi-harmonic approximation (QHA) method was introduced to mimic the unit cell volume expansion. According to vibrational modes analysis, it was ascertained that the biggest vibrational modes discrepancy was also located at 2.04 THz. Molecules in 0% and 4% unit cell expansion exhibit an opposite rotational direction in a-b plane compared with 2% unit cell expansion. Noncovalent intermolecular interactions were investigated with independent gradient model (IGM), and the result indicates that hydrogen bonding is the dominating noncovalent interaction of 3-HBA. While calculating systematic potential energy to the displaced bonds stretching involving hydrogen atoms, it was found the anomalous potential energy variation to the bond stretching provides a possible explanation for the rotation direction divergence, that is, the rotation direction divergence can be related to some hydrogen atoms seeking lower overall potential energy around their equilibrium positions during bond stretching in response to the variational intermolecular van der Waals force. This research combined THz-TDS with the quasi-harmonic approximation method, elucidating the principle of vibrational characteristics in different volumes, which is beneficial to the investigation of the terahertz low-frequency vibration to thermal behavior as a reference in biochemistry and other fields.
Collapse
Affiliation(s)
- Tao Chen
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zongqing Tang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Dihan Liang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yueting Huang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Xianhua Yin
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
9
|
Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Gastrodia elata Blume in the treatment of ischemic stroke. Exp Ther Med 2022; 24:742. [PMID: 36569043 PMCID: PMC9764286 DOI: 10.3892/etm.2022.11678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrodia elata Blume (GEB) is widely used to treat cardio-cerebrovascular disease in China and in traditional Chinese medicine it is considered to be a dispelling wind and dredging collateral. However, the mechanism and active components of the plant in treating ischemic stroke (IS) remain unclear. The present study aimed to identify the active components and mechanism of GEB in treating IS using network pharmacology and molecular docking technology. Network analysis predicted 752 potential targets from 14 compounds in GEB, sharing 32 key targets with IS-associated targets. Gene Ontology analysis of key targets showed that 'oxidative stress', 'immune response' and 'regulation of blood circulation' were significantly enriched. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the key targets regulated 11 representative pathways including 'arachidonic acid metabolism', 'lipid and galactose metabolism'. In the protein-protein interaction network, five core targets, including toll-like receptor agonist, STAT3, myeloperoxidase (MPO), prostaglandin-endoperoxide synthase and matrix metalloproteinase (MMP)9, were identified and successfully docked with four active components: Palmitic acid, alexandrin, para-hydroxybenzaldehyde and gastrodin. Alexandrin, para-hydroxybenzaldehyde, and gastrodin are closely related to brain ischemia/reperfusion damage and repair. Therefore, to further verify the mechanism of action of three active components in the second part, we established the HT22 oxygen-glucose deprivation-reperfusion (OGD/R) model. Cell Counting Kit-8 assay and western blot analysis demonstrated that these three active components of GEB regulated core targets of molecular docking, such as STAT3, MPO and MMP9. In vitro experiments showed that OGD/R decreased cell survival, while this effect was reversed by the three active components of GEB. In addition, western blot analysis indicated that alexandrin upregulated expression of phosphorylated-STAT3, para-hydroxybenzaldehyde downregulated MPO and gastrodin downregulated MMP9. Therefore, the present study showed that GEB may prevent and treat IS via interaction between the active components and the main targets, which is key for investigating the efficacy of traditional Chinese medicine.
Collapse
|
10
|
Cruz-Pereira JS, Moloney GM, Bastiaanssen TF, Boscaini S, Tofani G, Borras-Bisa J, van de Wouw M, Fitzgerald P, Dinan TG, Clarke G, Cryan JF. Prebiotic supplementation modulates selective effects of stress on behavior and brain metabolome in aged mice. Neurobiol Stress 2022; 21:100501. [DOI: 10.1016/j.ynstr.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
|
11
|
Li Y, Sui L, Zhao H, Zhang W, Gao L, Hu W, Song M, Liu X, Kong F, Gong Y, Wang Q, Guan H, Zhou P. Differences in the Establishment of Gut Microbiota and Metabolome Characteristics Between Balb/c and C57BL/6J Mice After Proton Irradiation. Front Microbiol 2022; 13:874702. [PMID: 35663879 PMCID: PMC9157390 DOI: 10.3389/fmicb.2022.874702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Although proton irradiation is ubiquitous in outer space as well as in the treatment of human diseases, its effects remain largely unclear. This work aimed to investigate and compare the composition of gut microbiota composition of mice in different species exposed to high-dose radiation. Male Balb/c mice and C57BL/6J mice were irradiated at a high dose (5Gy). Fecal specimens before and after irradiation were subjected to high-throughput sequencing (HTS) for the amplification of 16S rRNA gene sequences. We observed substantial changes in gut microbial composition among mice irradiated at high doses compared to non-irradiated controls. The changes included both the alpha and beta diversities. Furthermore, there were 11 distinct alterations in the irradiation group compared to the non-radiation control, including the families Muribaculaceae, Ruminococcaceae, Lactobacillus, Lachnospiraceae_NK4A136, Bacteroides, Alistipes, Clostridiales, Muribaculum, and Alloprevotella. Such alterations in the gut microbiome were accompanied by alterations in metabolite abundances, while at the metabolic level, 32 metabolites were likely to be potential biomarkers. Some alterations may have a positive effect on the repair of intestinal damage. Simultaneously, metabolites were predicted to involve multiple signal pathways, such as Urea Cycle, Ammonia Recycling, Alpha Linolenic Acid and Linoleic Acid Metabolism, Ketone Body Metabolism, Aspartate Metabolism, Phenylacetate Metabolism, Malate-Aspartate Shuttle, Arginine and Proline Metabolism and Carnitine Synthesis. Metabolites produced by proton irradiation in the microbial region play a positive role in repairing damage, making this area worthy of further experimental exploration. The present work offers an analytical and theoretical foundation to investigate how proton radiation affects the treatment of human diseases and identifies potential biomarkers to address the adverse effects of radiation.
Collapse
Affiliation(s)
- Yuchen Li
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hongling Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Gao
- College of Life Sciences, Hebei University, Baoding, China
| | - Weixiang Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Man Song
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochang Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Qiaojuan Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
12
|
Benzaldehyde Attenuates the Fifth Stage Larval Excretory–Secretory Product of Angiostrongylus cantonensis-Induced Injury in Mouse Astrocytes via Regulation of Endoplasmic Reticulum Stress and Oxidative Stress. Biomolecules 2022; 12:biom12020177. [PMID: 35204678 PMCID: PMC8961544 DOI: 10.3390/biom12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Excretory–secretory products (ESPs) are the main research targets for investigating the hosts and helminths interaction. Parasitic worms can migrate to parasitic sites and avoid the host immune response by secreting this product. Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis or meningoencephalitis in humans. Benzaldehydes are organic compounds composed of a benzene ring and formyl substituents. This compound has anti-inflammatory and antioxidation properties. Previous studies showed that 3-hydroxybenzaldehyde (3-HBA) and 4-hydroxybenzaldehyde (4-HBA) can reduce apoptosis in A. cantonensis ESP-treated astrocytes. These results on the protective effect underlying benzaldehyde have primarily focused on cell survival. The study was designed to investigate the molecular mechanisms of endoplasmic reticulum stress (ER stress) and oxidative stress in astrocytes in A. cantonensis ESP-treated astrocytes and to evaluate the therapeutic consequent of 3-HBA and 4-HBA. First, we initially established the RNA-seq dataset in each group, including normal, ESPs, ESPs + 3-HBA, and ESPs + 4-HBA. We also found that benzaldehyde (3-HBA and 4-HBA) can stimulate astrocytes to express ER stress-related molecules after ESP treatment. The level of oxidative stress could also be decreased in astrocytes by elevating antioxidant activity and reducing ROS generation. These results suggested that benzaldehyde may be a potential therapeutic compound for human angiostrongyliasis to support brain cell survival by inducing the expression levels of ER stress- and oxidative stress-related pathways.
Collapse
|
13
|
Kattner AA. The best protection is early detection. Biomed J 2022; 44:S155-S161. [PMID: 35042015 PMCID: PMC9068561 DOI: 10.1016/j.bj.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/29/2022] Open
Abstract
This current special issue of the Biomedical Journal provides insights in various cancer forms, and possible ways of prognostic and predictive screening. In detail we learn about lung cancer and tissue samples from ground glass opacifications, liquid biopsy through circulating tumor cells in colon cancer, transcription factor analysis in cervical cancer, and long non-coding RNAs in breast and lung cancer. A prognosis factor in individuals with acute myeloid leukemia and a rare fungal infection are determined. Challenges surrounding transplantation are elucidated, a potential biomarker for allograft dysfunction is presented, as well as a mean to save beta cells after islet transplantation. We get to know more about drug resistance in transplant recipients with tuberculosis, and also in the case of H.pylori infection. Lastly, the possibilities of cardiac shock wave therapy in simultaneous artery and renal disease is explored, we are presented with genetic factors contributing to cancer risk in arseniasis areas, and protocol recommendations for the optimal reproducibility of bladder volume in prostate cancer treatment. Three markers for detecting stages of diabetic retinopathy are covered, as well as a way to mitigate effects of lungworm secretions. Finally we get to see a novel approach for acupuncture needle material, and two management approaches for a form of skeletal malocclusion.
Collapse
|