1
|
De Lima Gualque MW, Vaso CO, Dos Santos KS, Galeane MC, Gomes PC, Palma MS, Soares Mendes Giannini MJ, Moroz A, Fusco Almeida AM. Peptides from Galleria mellonella against Cryptococcus spp: toxicity in three-dimensional cell cultures and G. mellonella. Future Microbiol 2025; 20:11-21. [PMID: 39552598 DOI: 10.1080/17460913.2024.2421632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: This work aimed to test peptides against the planktonic and biofilm form of Cryptococcus spp. and in vitro toxicity using three-dimensional (3D) cells characterized and evaluate in vivo toxicity in Galleria mellonella.Materials & methods: Susceptibility tests were conducted on the planktonic form and biofilm formation. The toxicity of the peptides was evaluated in lung and brain cells in monolayer (2D) and 3D mono- and co-culture, in addition to in vivo analysis with G. mellonella.Results: Susceptibility values ranged from 31.25 to over 250 µg/ml with a fungicidal profile. Regarding toxicity, the PepM2 peptide was not toxic in 3D culture (500 µg/ml). G. mellonella, showed a survival rate of more than 85% In assays with brain and lung cell lines, concentrations ranged from 4 × 104 to 4 × 103 cells/well for brain cells and 1 × 103 cells/well for lung cells. Cocultures used 1 × 105 brain and 1 × 103 lung cells.Conclusion: This study shows that the peptides have great potential against cryptococcosis, and all spheroids were characterized as having a spheroidal and compact structure.
Collapse
Affiliation(s)
- Marcos William De Lima Gualque
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Carolina Orlando Vaso
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Kelvin Sousa Dos Santos
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mariana Cristina Galeane
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Paulo César Gomes
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mario Sérgio Palma
- Department of Basic & Applied Biology/LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Andrei Moroz
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Ana Marisa Fusco Almeida
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
2
|
Häfner SJ. This is not a pipe - But how harmful is electronic cigarette smoke. Biomed J 2021; 44:227-234. [PMID: 34091092 PMCID: PMC8358191 DOI: 10.1016/j.bj.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
This issue of the Biomedical Journal tells us about the risks of electronic cigarette smoking, variations of SARS-CoV-2 and ACE2, and how COVID-19 affects the gastrointestinal system. Moreover, we learn that cancer immunotherapy seems to work well in elderly patients, how thyroid hormones regulate noncoding RNAs in a liver tumour context, and that G6PD is a double-edged sword of redox signalling. We also discover that Perilla leaf extract could inhibit SARS-CoV-2, that artificial neural networks can diagnose COVID-19 patients and predict vaccine epitopes on the Epstein-Barr Virus, and that men and women have differential inflammatory responses to physical effort. Finally, the surgical strategies for drug-resistant epilepsy, computer-supervised double-jaw surgery, dental pulp stem cell motility, and the restitution of the brain blood supply after atherosclerotic stroke are discussed.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Lund Group, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays Biochem 2021; 65:503-518. [PMID: 34028514 DOI: 10.1042/ebc20200129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Over the last few decades, the world has witnessed multiple viral pandemics, the current severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic being the worst and most devastating one, claiming millions of lives worldwide. Physicians, scientists, and engineers worldwide have joined hands in dealing with the current situation at an impressive speed and efficiency. One of the major reasons for the delay in response is our limited understanding of the mechanism of action and individual effects of the virus on different tissues and organs. Advances in 3D bioprinting have opened up a whole new area to explore and utilize the technology in fabricating models of these tissues and organs, recapitulating in vivo environment. These biomimetic models can not only be utilized in learning the infection pathways and drug toxicology studies but also minimize the need for animal models and shorten the time span for human clinical trials. The current review aims to integrate the existing developments in bioprinting techniques, and their implementation to develop tissue models, which has implications for SARS-CoV-2 infection. Future translation of these models has also been discussed with respect to the pandemic.
Collapse
|