1
|
Shimada S, Tanimoto K, Sasaki H, Taga T, Sasaki T, Imagawa T, Sasaki N. Automated scoring of glomerular injury in TNS2-deficient nephropathy. Exp Anim 2024; 73:370-375. [PMID: 38644233 PMCID: PMC11534489 DOI: 10.1538/expanim.24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Several artificial intelligence (AI) systems have been developed for glomerular pathology analysis in clinical settings. However, the application of AI systems in nonclinical fields remains limited. In this study, we trained a convolutional neural network model, which is an AI algorithm, to classify the severity of Tensin 2 (TNS2)-deficient nephropathy into seven categories. A dataset consisting of 803 glomerular images was generated from kidney sections of TNS2-deficient and wild-type mice. Manual evaluations of the images were conducted to assess their glomerular injury scores. The trained AI achieved approximately 70% accuracy in predicting the glomerular injury score for TNS2-deficient nephropathy. However, the AI achieved approximately 100% accuracy when considering predictions within one score of the true label as correct. The AI's predicted mean score closely matched the true mean score. In conclusion, while the AI model may not replace human judgment entirely, it can serve as a reliable second assessor in scoring glomerular injury, offering potential benefits in enhancing the accuracy and objectivity of such assessments.
Collapse
Affiliation(s)
- Shuji Shimada
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Kyosuke Tanimoto
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Takumi Taga
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Takeru Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Tomomi Imagawa
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori 034-8628 Japan
| |
Collapse
|
2
|
Tian C, Chen Y, Liu Y, Wang X, Lv Q, Li Y, Deng J, Liu Y, Li W. Accurate classification of glomerular diseases by hyperspectral imaging and transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108285. [PMID: 38964248 DOI: 10.1016/j.cmpb.2024.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND OBJECTIVE In renal disease research, precise glomerular disease diagnosis is crucial for treatment and prognosis. Currently reliant on invasive biopsies, this method bears risks and pathologist-dependent variability, yielding inconsistent results. There is a pressing need for innovative diagnostic tools that enhance traditional methods, streamline processes, and ensure accurate and consistent disease detection. METHODS In this study, we present an innovative Convolutional Neural Networks-Vision Transformer (CVT) model leveraging Transformer technology to refine glomerular disease diagnosis by fusing spectral and spatial data, surpassing traditional diagnostic limitations. Using interval sampling, preprocessing, and wavelength optimization, we also introduced the Gramian Angular Field (GAF) method for a unified representation of spectral and spatial characteristics. RESULTS We captured hyperspectral images ranging from 385.18 nm to 1009.47 nm and employed various methods to extract sample features. Initial models based solely on spectral features achieved a accuracy of 85.24 %. However, the CVT model significantly outperformed these, achieving an average accuracy of 94 %. This demonstrates the model's superior capability in utilizing sample data and learning joint feature representations. CONCLUSIONS The CVT model not only breaks through the limitations of existing diagnostic techniques but also showcases the vast potential of non-invasive, high-precision diagnostic technology in supporting the classification and prognosis of complex glomerular diseases. This innovative approach could significantly impact future diagnostic strategies in renal disease research. CONCISE ABSTRACT This study introduces a transformative hyperspectral image classification model leveraging a Transformer to significantly improve glomerular disease diagnosis accuracy by synergizing spectral and spatial data, surpassing conventional methods. Through a rigorous comparative analysis, it was determined that while spectral features alone reached a peak accuracy of 85.24 %, the novel Convolutional Neural Network-Transformer (CVT) model's integration of spatial-spectral features via the Gramian Angular Field (GAF) method markedly enhanced diagnostic precision, achieving an average accuracy of 94 %. This methodological innovation not only overcomes traditional diagnostic limitations but also underscores the potential of non-invasive, high-precision technologies in advancing the classification and prognosis of complex renal diseases, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Chongxuan Tian
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Yuzhuo Chen
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Yelin Liu
- Jiangsu Dualix Spectral Imaging Co., Ltd., Wuxi 214000, China
| | - Xin Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Qize Lv
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Yunze Li
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Jinlin Deng
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Yifei Liu
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Wei Li
- School of Control Science and Engineering, Shandong University, Qianfoshan Campus, 17923 Jingshi Road, Jinan, Shandong 250061, China.
| |
Collapse
|
3
|
Chen YC, Lin SZ, Wu JR, Yu WH, Harn HJ, Tsai WC, Liu CA, Kuo KL, Yeh CY, Tsai ST. Deep Residual Learning-Based Classification with Identification of Incorrect Predictions and Quantification of Cellularity and Nuclear Morphological Features in Digital Pathological Images of Common Astrocytic Tumors. Cancers (Basel) 2024; 16:2449. [PMID: 39001511 PMCID: PMC11240501 DOI: 10.3390/cancers16132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Interobserver variations in the pathology of common astrocytic tumors impact diagnosis and subsequent treatment decisions. This study leveraged a residual neural network-50 (ResNet-50) in digital pathological images of diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma to recognize characteristic pathological features and perform classification at the patch and case levels with identification of incorrect predictions. In addition, cellularity and nuclear morphological features, including axis ratio, circularity, entropy, area, irregularity, and perimeter, were quantified via a hybrid task cascade (HTC) framework and compared between different characteristic pathological features with importance weighting. A total of 95 cases, including 15 cases of diffuse astrocytoma, 11 cases of anaplastic astrocytoma, and 69 cases of glioblastoma, were collected in Taiwan Hualien Tzu Chi Hospital from January 2000 to December 2021. The results revealed that an optimized ResNet-50 model could recognize characteristic pathological features at the patch level and assist in diagnosis at the case level with accuracies of 0.916 and 0.846, respectively. Incorrect predictions were mainly due to indistinguishable morphologic overlap between anaplastic astrocytoma and glioblastoma tumor cell area, zones of scant vascular lumen with compact endothelial cells in the glioblastoma microvascular proliferation area mimicking the glioblastoma tumor cell area, and certain regions in diffuse astrocytoma with too low cellularity being misrecognized as the glioblastoma necrosis area. Significant differences were observed in cellularity and each nuclear morphological feature among different characteristic pathological features. Furthermore, using the extreme gradient boosting (XGBoost) algorithm, we found that entropy was the most important feature for classification, followed by cellularity, area, circularity, axis ratio, perimeter, and irregularity. Identifying incorrect predictions provided valuable feedback to machine learning design to further enhance accuracy and reduce errors in classification. Moreover, quantifying cellularity and nuclear morphological features with importance weighting provided the basis for developing an innovative scoring system to achieve objective classification and precision diagnosis among common astrocytic tumors.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Division of Digital Pathology, Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Department of Pathology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Shinn-Zong Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-J.H.); (C.-A.L.)
- Department of Neuroscience Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Jia-Ru Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | | | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-J.H.); (C.-A.L.)
- Division of Molecular Pathology, Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-J.H.); (C.-A.L.)
- Department of Neuroscience Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | | | | | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Neuroscience Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
4
|
Juang CF, Chuang YW, Lin GW, Chung IF, Lo YC. Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images. Comput Med Imaging Graph 2024; 115:102375. [PMID: 38599040 DOI: 10.1016/j.compmedimag.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Glomerulus morphology on renal pathology images provides valuable diagnosis and outcome prediction information. To provide better care, an efficient, standardized, and scalable method is urgently needed to optimize the time-consuming and labor-intensive interpretation process by renal pathologists. This paper proposes a deep convolutional neural network (CNN)-based approach to automatically detect and classify glomeruli with different stains in renal pathology images. In the glomerulus detection stage, this paper proposes a flattened Xception with a feature pyramid network (FX-FPN). The FX-FPN is employed as a backbone in the framework of faster region-based CNN to improve glomerulus detection performance. In the classification stage, this paper considers classifications of five glomerulus morphologies using a flattened Xception classifier. To endow the classifier with higher discriminability, this paper proposes a generative data augmentation approach for patch-based glomerulus morphology augmentation. New glomerulus patches of different morphologies are generated for data augmentation through the cycle-consistent generative adversarial network (CycleGAN). The single detection model shows the F1 score up to 0.9524 in H&E and PAS stains. The classification result shows that the average sensitivity and specificity are 0.7077 and 0.9316, respectively, by using the flattened Xception with the original training data. The sensitivity and specificity increase to 0.7623 and 0.9443, respectively, by using the generative data augmentation. Comparisons with different deep CNN models show the effectiveness and superiority of the proposed approach.
Collapse
Affiliation(s)
- Chia-Feng Juang
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Ya-Wen Chuang
- Section of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan, ROC; School of Medicine, College of Medicine, China Medical University, Taichung 406040, Taiwan, ROC; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Guan-Wen Lin
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, ROC.
| | - Ying-Chih Lo
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhuang K, Wang W, Xu C, Guo X, Ren X, Liang Y, Duan Z, Song Y, Zhang Y, Cai G. Machine learning-based diagnosis and prognosis of IgAN: A systematic review and meta-analysis. Heliyon 2024; 10:e33090. [PMID: 38988582 PMCID: PMC11234108 DOI: 10.1016/j.heliyon.2024.e33090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose Plenty of studies have explored the diagnosis and prognosis of IgA nephropathy (IgAN) based on machine learning (ML), but the accuracy lacks the support of evidence-based medical evidence. We aim at this problem to guide the precision treatment of IgAN. Methods Embase, Pubmed, Cochrane Library, and Web of Science were searched systematically until February 24th, 2024, for publications on ML-based diagnosis and prognosis of IgAN. Subgroup analysis or meta-regression was conducted according to modeling method, follow-up time, endpoint definition, and variable type. Further, the rank sum test was applied to compare the discrimination ability of prognosis. Results A total of 47 studies involving 51,935 patients were eligible. Among the 38 diagnostic models, the pooled C-index was 0.902 (95 % CI: 0.878-0.926) in 27 diagnostic models. Of the 162 prognostic models, the C-index for model discrimination of 144 prognostic models was 0.838 (95 % CI: 0.827-0.850) in training. The overall discrimination ability of prognosis was as follows: COX regression > new ML models (e.g. ANN, DT, RF, SVM, XGBoost) > traditional ML models (logistic regression) > Naïve Bayesian network (P < 0.05). External validation of IIgAN-RPT in 19 models showed a pooled C-index of 0.801 (95 % CI: 0.784-0.817). Conclusions New ML models have shown application values that are as good as traditional ML models, both in diagnosis and prognosis. In addition, future models are desired to use a more sensitive prognostic endpoint (albuminuria), improve predictive ability in moderate progression risk, and ultimately translate into clinically applicable intelligent tools.
Collapse
Affiliation(s)
- Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Wenjuan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xuejing Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yanjun Liang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Zhiyu Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Yifan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
6
|
He Q, Ge S, Zeng S, Wang Y, Ye J, He Y, Li J, Wang Z, Guan T. Global attention based GNN with Bayesian collaborative learning for glomerular lesion recognition. Comput Biol Med 2024; 173:108369. [PMID: 38552283 DOI: 10.1016/j.compbiomed.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Glomerular lesions reflect the onset and progression of renal disease. Pathological diagnoses are widely regarded as the definitive method for recognizing these lesions, as the deviations in histopathological structures closely correlate with impairments in renal function. METHODS Deep learning plays a crucial role in streamlining the laborious, challenging, and subjective task of recognizing glomerular lesions by pathologists. However, the current methods treat pathology images as data in regular Euclidean space, limiting their ability to efficiently represent the complex local features and global connections. In response to this challenge, this paper proposes a graph neural network (GNN) that utilizes global attention pooling (GAP) to more effectively extract high-level semantic features from glomerular images. The model incorporates Bayesian collaborative learning (BCL), enhancing node feature fine-tuning and fusion during training. In addition, this paper adds a soft classification head to mitigate the semantic ambiguity associated with a purely hard classification. RESULTS This paper conducted extensive experiments on four glomerular datasets, comprising a total of 491 whole slide images (WSIs) and 9030 images. The results demonstrate that the proposed model achieves impressive F1 scores of 81.37%, 90.12%, 87.72%, and 98.68% on four private datasets for glomerular lesion recognition. These scores surpass the performance of the other models used for comparison. Furthermore, this paper employed a publicly available BReAst Carcinoma Subtyping (BRACS) dataset with an 85.61% F1 score to further prove the superiority of the proposed model. CONCLUSION The proposed model not only facilitates precise recognition of glomerular lesions but also serves as a potent tool for diagnosing kidney diseases effectively. Furthermore, the framework and training methodology of the GNN can be adeptly applied to address various pathology image classification challenges.
Collapse
Affiliation(s)
- Qiming He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Shuang Ge
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Peng Cheng Laboratory, Shenzhen, China
| | - Siqi Zeng
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Greater Bay Area National Center of Technology Innovation, Guangzhou, China
| | - Yanxia Wang
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Ye
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yonghong He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jing Li
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Zhe Wang
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Guan
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
7
|
Pilva P, Bülow R, Boor P. Deep learning applications for kidney histology analysis. Curr Opin Nephrol Hypertens 2024; 33:291-297. [PMID: 38411024 DOI: 10.1097/mnh.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Nephropathology is increasingly incorporating computational methods to enhance research and diagnostic accuracy. The widespread adoption of digital pathology, coupled with advancements in deep learning, will likely transform our pathology practices. Here, we discuss basic concepts of deep learning, recent applications in nephropathology, current challenges in implementation and future perspectives. RECENT FINDINGS Deep learning models have been developed and tested in various areas of nephropathology, for example, predicting kidney disease progression or diagnosing diseases based on imaging and clinical data. Despite their promising potential, challenges remain that hinder a wider adoption, for example, the lack of prospective evidence and testing in real-world scenarios. SUMMARY Deep learning offers great opportunities to improve quantitative and qualitative kidney histology analysis for research and clinical nephropathology diagnostics. Although exciting approaches already exist, the potential of deep learning in nephropathology is only at its beginning and we can expect much more to come.
Collapse
Affiliation(s)
| | | | - Peter Boor
- Institute of Pathology
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Zhan K, Buhler KA, Chen IY, Fritzler MJ, Choi MY. Systemic lupus in the era of machine learning medicine. Lupus Sci Med 2024; 11:e001140. [PMID: 38443092 PMCID: PMC11146397 DOI: 10.1136/lupus-2023-001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Artificial intelligence and machine learning applications are emerging as transformative technologies in medicine. With greater access to a diverse range of big datasets, researchers are turning to these powerful techniques for data analysis. Machine learning can reveal patterns and interactions between variables in large and complex datasets more accurately and efficiently than traditional statistical methods. Machine learning approaches open new possibilities for studying SLE, a multifactorial, highly heterogeneous and complex disease. Here, we discuss how machine learning methods are rapidly being integrated into the field of SLE research. Recent reports have focused on building prediction models and/or identifying novel biomarkers using both supervised and unsupervised techniques for understanding disease pathogenesis, early diagnosis and prognosis of disease. In this review, we will provide an overview of machine learning techniques to discuss current gaps, challenges and opportunities for SLE studies. External validation of most prediction models is still needed before clinical adoption. Utilisation of deep learning models, access to alternative sources of health data and increased awareness of the ethics, governance and regulations surrounding the use of artificial intelligence in medicine will help propel this exciting field forward.
Collapse
Affiliation(s)
- Kevin Zhan
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Katherine A Buhler
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irene Y Chen
- Computational Precision Health, University of California Berkeley and University of California San Francisco, Berkeley, California, USA
- Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, USA
| | - Marvin J Fritzler
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - May Y Choi
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Altini N, Rossini M, Turkevi-Nagy S, Pesce F, Pontrelli P, Prencipe B, Berloco F, Seshan S, Gibier JB, Pedraza Dorado A, Bueno G, Peruzzi L, Rossi M, Eccher A, Li F, Koumpis A, Beyan O, Barratt J, Vo HQ, Mohan C, Nguyen HV, Cicalese PA, Ernst A, Gesualdo L, Bevilacqua V, Becker JU. Performance and limitations of a supervised deep learning approach for the histopathological Oxford Classification of glomeruli with IgA nephropathy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107814. [PMID: 37722311 DOI: 10.1016/j.cmpb.2023.107814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The Oxford Classification for IgA nephropathy is the most successful example of an evidence-based nephropathology classification system. The aim of our study was to replicate the glomerular components of Oxford scoring with an end-to-end deep learning pipeline that involves automatic glomerular segmentation followed by classification for mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental sclerosis (S) and active crescents (C). METHODS A total number of 1056 periodic acid-Schiff (PAS) whole slide images (WSIs), coming from 386 kidney biopsies, were annotated. Several detection models for glomeruli, based on the Mask R-CNN architecture, were trained on 587 WSIs, validated on 161 WSIs, and tested on 127 WSIs. For the development of segmentation models, 20,529 glomeruli were annotated, of which 16,571 as training and 3958 as validation set. The test set of the segmentation module comprised of 2948 glomeruli. For the Oxford classification, 6206 expert-annotated glomeruli from 308 PAS WSIs were labelled for M, E, S, C and split into a training set of 4298 glomeruli from 207 WSIs, and a test set of 1908 glomeruli. We chose the best-performing models to construct an end-to-end pipeline, which we named MESCnn (MESC classification by neural network), for the glomerular Oxford classification of WSIs. RESULTS Instance segmentation yielded excellent results with an AP50 ranging between 78.2-80.1 % (79.4 ± 0.7 %) on the validation and 75.1-77.7 % (76.5 ± 0.9 %) on the test set. The aggregated Jaccard Index was between 73.4-75.9 % (75.0 ± 0.8 %) on the validation and 69.1-73.4 % (72.2 ± 1.4 %) on the test set. At granular glomerular level, Oxford Classification was best replicated for M with EfficientNetV2-L with a mean ROC-AUC of 90.2 % and a mean precision/recall area under the curve (PR-AUC) of 81.8 %, best for E with MobileNetV2 (ROC-AUC 94.7 %) and ResNet50 (PR-AUC 75.8 %), best for S with EfficientNetV2-M (mean ROC-AUC 92.7 %, mean PR-AUC 87.7 %), best for C with EfficientNetV2-L (ROC-AUC 92.3 %) and EfficientNetV2-S (PR-AUC 54.7 %). At biopsy-level, correlation between expert and deep learning labels fulfilled the demands of the Oxford Classification. CONCLUSION We designed an end-to-end pipeline for glomerular Oxford Classification on both a granular glomerular and an entire biopsy level. Both the glomerular segmentation and the classification modules are freely available for further development to the renal medicine community.
Collapse
Affiliation(s)
- Nicola Altini
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Michele Rossini
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Sándor Turkevi-Nagy
- Department of Pathology, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Francesco Pesce
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy; Division of Renal Medicine, "Fatebenefratelli Isola Tiberina - Gemelli Isola", Rome, Italy
| | - Paola Pontrelli
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Berardino Prencipe
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Francesco Berloco
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Surya Seshan
- Department of Pathology, Weill-Cornell Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Jean-Baptiste Gibier
- Department of Pathology, Pathology Institute, Lille University Hospital (CHU), Lille, France
| | | | - Gloria Bueno
- VISILAB Research Group, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Licia Peruzzi
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Feifei Li
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Adamantios Koumpis
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Oya Beyan
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Huy Quoc Vo
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Hien Van Nguyen
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | | | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy; Apulian Bioengineering s.r.l., Via delle Violette n.14, Modugno 70026, Italy.
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Kong XY, Zhao XS, Sun XH, Wang P, Wu Y, Peng RY, Zhang QY, Wang YZ, Li R, Yang YH, Lv YR. Classification of Glomerular Pathology Images in Children Using Convolutional Neural Networks with Improved SE-ResNet Module. Interdiscip Sci 2023; 15:602-615. [PMID: 37525066 DOI: 10.1007/s12539-023-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Classification of glomerular pathology based on histology sections is the key to diagnose the type and degree of kidney diseases. To address problems in the classification of glomerular lesions in children, a deep learning-based complete glomerular classification framework was designed to detect and classify glomerular pathology. A neural network integrating Resnet and Senet (RS-INet) was proposed and a glomerular classification algorithm implemented to achieve high-precision classification of glomerular pathology. SE-Resnet was applied with improvement by transforming the convolutional layer of the original Resnet residual block into a convolutional block with smaller parameters as well as reduced network parameters on the premise of ensuring network performance. Experimental results showed that our algorithm had the best performance in differentiating mesangial proliferative glomerulonephritis (MsPGN), crescent glomerulonephritis (CGN), and glomerulosclerosis (GS) from normal glomerulus (Normal) compared with other classification algorithms. The accuracy rates were 0.960, 0.940, 0.937, and 0.968, respectively. This suggests that the classification algorithm proposed in the present study is able to identify glomerular lesions with a higher precision, and distinguish similar glomerular pathologies from each other.
Collapse
Affiliation(s)
- Xiang-Yong Kong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin-Shen Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Han Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Ying Wu
- Pathology Department, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200040, China
| | - Rui-Yang Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qi-Yuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yu-Ze Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Rong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi-Heng Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ying-Rui Lv
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
11
|
Liu X, Wu Y, Chen Y, Hui D, Zhang J, Hao F, Lu Y, Cheng H, Zeng Y, Han W, Wang C, Li M, Zhou X, Zheng W. Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators. Comput Biol Med 2023; 166:107470. [PMID: 37722173 DOI: 10.1016/j.compbiomed.2023.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Diagnosis of diabetic kidney disease (DKD) mainly relies on screening the morphological variations and internal lesions of glomeruli from pathological kidney biopsy. The prominent pathological alterations of glomeruli for DKD include glomerular hypertrophy and nodular mesangial sclerosis. However, the qualitative judgment of these alterations is inaccurate and inconstant due to the intra- and inter-subject variability of pathologists. It is necessary to design artificial intelligence (AI) methods for accurate quantification of these pathological alterations and outcome prediction of DKD. In this work, we present an AI-driven framework to quantify the volume of glomeruli and degree of nodular mesangial sclerosis, respectively, based on an instance segmentation module and a novel weakly supervised Macro-Micro Aggregation (MMA) module. Subsequently, we construct classic machine learning models to predict the degree of DKD based on three selected pathological indicators via factor analysis. These corresponding modules are trained and tested on a total of 281 whole slide images (WSIs) digitized from two hospitals with different scanners. Our designed AI framework achieved inspiring results with 0.926 mIoU for glomerulus segmentation, and 0.899 F1 score for glomerulus classification in the external testing dataset. Meantime, the visualized results of the MMA module could reflect the location of the lesions. The performance of predicting disease achieved the F1 score of 0.917, which further proved the effectiveness of our AI-driven quantification of pathological indicators. Additionally, the interpretation of the machine learning model with the SHAP method showed similar accordance with the development of DKD in pathology. In conclusion, the proposed auxiliary diagnostic technologies have the feasibility for quantitative analysis of glomerular pathological tissues and alterations in DKD. Pathological quantitative indicators will also make it more convenient to provide doctors with assistance in clinical practice.
Collapse
Affiliation(s)
- Xueyu Liu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yongfei Wu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Yilin Chen
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dongna Hui
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jianan Zhang
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Fang Hao
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yuanyue Lu
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Hangbei Cheng
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yue Zeng
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Weixia Han
- Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Wang
- Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Li
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| | - Wen Zheng
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Besusparis J, Morkunas M, Laurinavicius A. A Spatially Guided Machine-Learning Method to Classify and Quantify Glomerular Patterns of Injury in Histology Images. J Imaging 2023; 9:220. [PMID: 37888327 PMCID: PMC10607091 DOI: 10.3390/jimaging9100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction The diagnosis of glomerular diseases is primarily based on visual assessment of histologic patterns. Semi-quantitative scoring of active and chronic lesions is often required to assess individual characteristics of the disease. Reproducibility of the visual scoring systems remains debatable, while digital and machine-learning technologies present opportunities to detect, classify and quantify glomerular lesions, also considering their inter- and intraglomerular heterogeneity. MATERIALS AND METHODS We performed a cross-validated comparison of three modifications of a convolutional neural network (CNN)-based approach for recognition and intraglomerular quantification of nine main glomerular patterns of injury. Reference values provided by two nephropathologists were used for validation. For each glomerular image, visual attention heatmaps were generated with a probability of class attribution for further intraglomerular quantification. The quality of classifier-produced heatmaps was evaluated by intersection over union metrics (IoU) between predicted and ground truth localization heatmaps. RESULTS A proposed spatially guided modification of the CNN classifier achieved the highest glomerular pattern classification accuracies, with area under curve (AUC) values up to 0.981. With regards to heatmap overlap area and intraglomerular pattern quantification, the spatially guided classifier achieved a significantly higher generalized mean IoU value compared to single-multiclass and multiple-binary classifiers. CONCLUSIONS We propose a spatially guided CNN classifier that in our experiments reveals the potential to achieve high accuracy for the localization of intraglomerular patterns.
Collapse
Affiliation(s)
- Justinas Besusparis
- Faculty of Medicine, Vilnius University, M.K.Ciurlionio 21, LT-03101 Vilnius, Lithuania; (M.M.); (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, P. Baublio 5, LT-08406 Vilnius, Lithuania
| | - Mindaugas Morkunas
- Faculty of Medicine, Vilnius University, M.K.Ciurlionio 21, LT-03101 Vilnius, Lithuania; (M.M.); (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, P. Baublio 5, LT-08406 Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Vilnius University, M.K.Ciurlionio 21, LT-03101 Vilnius, Lithuania; (M.M.); (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, P. Baublio 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
13
|
Grovu R, Huo Y, Nguyen A, Mourad O, Pan Z, El-Gharib K, Wei C, Mustafa A, Quan T, Slobodnick A. Machine learning: Predicting hospital length of stay in patients admitted for lupus flares. Lupus 2023; 32:1418-1429. [PMID: 37831499 DOI: 10.1177/09612033231206830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Although rare, severe systemic lupus erythematosus (SLE) flares requiring hospitalization account for most of the direct costs of SLE care. New machine learning (ML) methods may optimize lupus care by predicting which patients will have a prolonged hospital length of stay (LOS). Our study uses a machine learning approach to predict the LOS in patients admitted for lupus flares and assesses which features prolong LOS. METHODS Our study sampled 5831 patients admitted for lupus flares from the National Inpatient Sample Database 2016-2018 and collected 90 demographics and comorbidity features. Four machine learning (ML) models were built (XGBoost, Linear Support Vector Machines, K Nearest Neighbors, and Logistic Regression) to predict LOS, and their performance was evaluated using multiple metrics, including accuracy, receiver operator area under the curve (ROC-AUC), precision-recall area under the curve (PR- AUC), and F1-score. Using the highest-performing model (XGBoost), we assessed the feature importance of our input features using Shapley value explanations (SHAP) to rank their impact on LOS. RESULTS Our XGB model performed the best with a ROC-AUC of 0.87, PR-AUC of 0.61, an F1 score of 0.56, and an accuracy of 95%. The features with the most significant impact on the model were "the need for a central line," "acute dialysis," and "acute renal failure." Other top features include those related to renal and infectious comorbidities. CONCLUSION Our results were consistent with the established literature and showed promise in ML over traditional methods of predictive analyses, even with rare rheumatic events such as lupus flare hospitalizations.
Collapse
Affiliation(s)
- Radu Grovu
- Internal Medicine Department, Staten Island University Hospital, Staten Island, NY, USA
| | - Yanran Huo
- Department of Engineering, University of Massachusetts, Dartmouth, MA, USA
| | - Andrew Nguyen
- Medicine Department, Harvard Medical School, Boston, MA, USA
| | - Omar Mourad
- Internal Medicine Department, Staten Island University Hospital, Staten Island, NY, USA
| | - Zihang Pan
- Medicine Department, Duke-NUS Medical School, Singapore
| | - Khalil El-Gharib
- Internal Medicine Department, Staten Island University Hospital, Staten Island, NY, USA
| | - Chapman Wei
- Internal Medicine Department, Staten Island University Hospital, Staten Island, NY, USA
| | - Ahmad Mustafa
- Internal Medicine Department, Staten Island University Hospital, Staten Island, NY, USA
| | - Theodore Quan
- Medicine Department, George Washington University School of Medicine, Washington, DC, USA
| | - Anastasia Slobodnick
- Rheumatology Department, Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
14
|
Application of Machine Learning Models in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24054514. [PMID: 36901945 PMCID: PMC10003088 DOI: 10.3390/ijms24054514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease and is extremely heterogeneous in terms of immunological features and clinical manifestations. This complexity could result in a delay in the diagnosis and treatment introduction, with impacts on long-term outcomes. In this view, the application of innovative tools, such as machine learning models (MLMs), could be useful. Thus, the purpose of the present review is to provide the reader with information about the possible application of artificial intelligence in SLE patients from a medical perspective. To summarize, several studies have applied MLMs in large cohorts in different disease-related fields. In particular, the majority of studies focused on diagnosis and pathogenesis, disease-related manifestations, in particular Lupus Nephritis, outcomes and treatment. Nonetheless, some studies focused on peculiar features, such as pregnancy and quality of life. The review of published data demonstrated the proposal of several models with good performance, suggesting the possible application of MLMs in the SLE scenario.
Collapse
|
15
|
Schena FP, Magistroni R, Narducci F, Abbrescia DI, Anelli VW, Di Noia T. Artificial intelligence in glomerular diseases. Pediatr Nephrol 2022; 37:2533-2545. [PMID: 35266037 DOI: 10.1007/s00467-021-05419-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.
Collapse
Affiliation(s)
- Francesco P Schena
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| | | | - Fedelucio Narducci
- Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, Italy
| | | | - Vito W Anelli
- Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, Italy
| | - Tommaso Di Noia
- Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, Italy
| |
Collapse
|
16
|
Artificial Intelligence-Assisted Renal Pathology: Advances and Prospects. J Clin Med 2022; 11:jcm11164918. [PMID: 36013157 PMCID: PMC9410196 DOI: 10.3390/jcm11164918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Digital imaging and advanced microscopy play a pivotal role in the diagnosis of kidney diseases. In recent years, great achievements have been made in digital imaging, providing novel approaches for precise quantitative assessments of nephropathology and relieving burdens of renal pathologists. Developing novel methods of artificial intelligence (AI)-assisted technology through multidisciplinary interaction among computer engineers, renal specialists, and nephropathologists could prove beneficial for renal pathology diagnoses. An increasing number of publications has demonstrated the rapid growth of AI-based technology in nephrology. In this review, we offer an overview of AI-assisted renal pathology, including AI concepts and the workflow of processing digital image data, focusing on the impressive advances of AI application in disease-specific backgrounds. In particular, this review describes the applied computer vision algorithms for the segmentation of kidney structures, diagnosis of specific pathological changes, and prognosis prediction based on images. Lastly, we discuss challenges and prospects to provide an objective view of this topic.
Collapse
|
17
|
Kattner AA. An area of greatest vulnerability - recent advances in kidney injury. Biomed J 2022; 45:567-572. [PMID: 35944870 PMCID: PMC9356640 DOI: 10.1016/j.bj.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
In this issue of the Biomedical Journal the reader is provided with an insight into the latest observations and advances in acute kidney injury as well as chronic kidney disease. The current SARS-CoV-2 variants are reviewed, and the role of long non-coding RNA in HIV therapy is explored. Furthermore, the potential of metabolomics as means to diagnose multiple sclerosis as well as tuberculosis is presented. Other topics of this issue include the restoration of the spermatogonial stem cell niche; atherosclerosis and the use of improved ultrasound images; and the effect of transcranial magnetic stimulation in patients with autism spectrum disorder. Finally, it is shown how continuous passive motion can be used as supportive therapeutic approach in children with cerebral palsy, and minimally invasive surgery is presented as valid alternative in cases of spine metastasis.
Collapse
|