1
|
Wang H, Wang Q, He Q, Li S, Zhao Y, Zuo Y. Current perioperative nociception monitoring and potential directions. Asian J Surg 2024; 47:2558-2565. [PMID: 38548545 DOI: 10.1016/j.asjsur.2024.03.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 06/05/2024] Open
Abstract
Perioperative nociception-antinociception balance is essential for the prevention of adverse postoperative events. Estimating the nociception level helps optimize intraoperative management. In the past two decades, various nociception monitoring devices have been developed for the identification of intraoperative nociception. However, each type of nociception monitoring device has advantages and disadvantages, limiting their clinical application in particular patients and settings. Therefore, this review aimed to summarize the information on nociceptor monitoring in current clinical settings, explore each technique's particularities, and possible future directions to provide a reference for clinicians and researchers.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, China
| | - Qifeng Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, China
| | - Qinqin He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, Yunnan, China
| | - Yuyi Zhao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, China.
| |
Collapse
|
2
|
Mirra A, Gamez Maidanskaia E, Levionnois OL, Spadavecchia C. How Is the Nociceptive Withdrawal Reflex Influenced by Increasing Doses of Propofol in Pigs? Animals (Basel) 2024; 14:1081. [PMID: 38612320 PMCID: PMC11010981 DOI: 10.3390/ani14071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The nociceptive withdrawal reflex (NWR) is a physiological, polysynaptic spinal reflex occurring in response to noxious stimulations. Continuous NWR threshold (NWRt) tracking has been shown to be possibly useful in the depth of anesthesia assessment. The primary aim of this study was to describe how propofol modulates the NWRt over time in pigs. Five juvenile pigs (anesthetized three times) were included. An intravenous (IV) infusion of propofol (20 mg/kg/h) was started, and boli were administered to effect until intubation. Afterwards, the infusion was increased every ten minutes by 6 mg/kg/h, together with an IV bolus of 0.5 mg/kg, until reaching an electroencephalographic suppression ratio (SR) of between 10% and 30%. The NWRt was continuously monitored. For data analysis, the time span between 15 min following intubation and the end of propofol infusion was considered. Individual durations of propofol administration were divided into five equal time intervals for each pig (TI1-TI5). A linear regression between NWRt and TI was performed for each pig. Moreover, the baseline NWRt and slopes of the linear regression (b1) were compared among days using a Friedman Repeated Measures Analysis of Variance on Ranks. The NWRt always increased with the propofol dose (b1 = 4.71 ± 3.23; mean ± standard deviation). No significant differences were found between the baseline NWRt and the b1 values. Our results suggest that the NWRt may complement the depth of anesthesia assessment in pigs receiving propofol.
Collapse
Affiliation(s)
- Alessandro Mirra
- Section of Anesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (E.G.M.); (O.L.L.); (C.S.)
| | | | | | | |
Collapse
|
3
|
Jurth C, Lichtner G, Bienert T, von Dincklage F. The variability in nociceptive flexion reflex threshold measurement is mostly caused by probabilistic effects of the estimation algorithms: a simulation study. Int J Neurosci 2024:1-10. [PMID: 38315138 DOI: 10.1080/00207454.2024.2312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES The nociceptive flexion reflex (NFR) and its threshold are frequently used to investigate spinal nociception in humans. Since this threshold (NFRT) is a probabilistic measure, specific algorithms are used for NFRT estimation based on the stochastic occurrence of reflexes at different stimulus intensities. We used a validated simulation model of the NFR to investigate the amount of NFRT measurement variability induced by different estimation algorithms in a steady setting of reduced external influences. METHODS We simulated the behavior of different estimation algorithms in subjects with an artificially steady baseline NFRT variability (standard deviation: 0 mA) or low baseline NFRT variability (standard deviation: 0.156 mA), equaling a quiet experimental setting. The obtained data were analyzed for NFRT measurement variability caused by the algorithms compared to the baseline variability reflecting other physiological influences. RESULTS The standard deviation of the NFRT estimated by the different algorithms ranged between 0.381 and 3.464 mA with 96.8% to 99.6% of the measurement variability attributed to the algorithm used. Out of the investigated algorithms the dynamic staircase algorithm was most precise. CONCLUSION The NFRT measurement variability observed during quiet and steady experimental sessions is mostly caused by the properties of the estimation algorithms, due to the probabilistic nature of the reflex occurrence. Our results give reference for choosing the optimal estimation algorithm to improve measurement precision.
Collapse
Affiliation(s)
- Carlo Jurth
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Lichtner
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Bienert
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk von Dincklage
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Friedberg BL. Opioid-free anaesthesia (OFA) for elective cosmetic surgery: A role of processed EEG monitoring. Indian J Anaesth 2023; 67:767-769. [PMID: 37829787 PMCID: PMC10566661 DOI: 10.4103/ija.ija_786_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Barry L. Friedberg
- Goldilocks Anesthesia Foundation, 1133 Camelback Street, Suite 10336, Newport Beach, CA
| |
Collapse
|
5
|
Bertolizio G, Molliex S, Richebé P. Evaluation of nociception: if one parameter can do so little, can multiple parameters do so much? Anaesth Crit Care Pain Med 2023; 42:101236. [PMID: 37116863 DOI: 10.1016/j.accpm.2023.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Affiliation(s)
- Gianluca Bertolizio
- Department of Pediatric Anesthesiology, Montreal Children's Hospital, Montreal, QC H4A 3J1, Canada; Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Serge Molliex
- Université Saint Etienne, Département d'Anesthésie-Réanimation CHU Saint Etienne, Inserm Sainbiose U1059, F-42023, Saint Etienne, France
| | - Philippe Richebé
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de l'Est de l'Ile de Montreal, Montreal, QC, H1T 2M4, Canada; Research Center of Maisonneuve-Rosemont Hospital, CIUSSS de l'Est de l'Ile de Montreal, Montreal, QC, H1T 2M4, Canada; Department of Anesthesiology and Pain Medicine, University of Montreal, Montreal, QC, H3T 1J4
| |
Collapse
|
6
|
Anders M, Anders B, Dreismickenbecker E, Hight D, Kreuzer M, Walter C, Zinn S. EEG responses to standardised noxious stimulation during clinical anaesthesia: a pilot study. BJA OPEN 2023; 5:100118. [PMID: 37587999 PMCID: PMC10430841 DOI: 10.1016/j.bjao.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 08/18/2023]
Abstract
Background During clinical anaesthesia, the administration of analgesics mostly relies on empirical knowledge and observation of the patient's reactions to noxious stimuli. Previous studies in healthy volunteers under controlled conditions revealed EEG activity in response to standardised nociceptive stimuli even at high doses of remifentanil and propofol. This pilot study aims to investigate the feasibility of using these standardised nociceptive stimuli in routine clinical practice. Methods We studied 17 patients undergoing orthopaedic trauma surgery under general anaesthesia. We evaluated if the EEG could track standardised noxious phase-locked electrical stimulation and tetanic stimulation, a time-locked surrogate for incisional pain, before, during, and after the induction of general anaesthesia. Subsequently, we analysed the effect of tetanic stimulation on the surgical pleth index as a peripheral, vegetative, nociceptive marker. Results We found that the phase-locked evoked potentials after noxious electrical stimulation vanished after the administration of propofol, but not at low concentrations of remifentanil. After noxious tetanic stimulation under general anaesthesia, there were no consistent spectral changes in the EEG, but the vegetative response in the surgical pleth index was statistically significant (Hedges' g effect size 0.32 [95% confidence interval 0.12-0.77], P=0.035). Conclusion Our standardised nociceptive stimuli are not optimised for obtaining consistent EEG responses in patients during clinical anaesthesia. To validate and sufficiently reproduce EEG-based standardised stimulation as a marker for nociception in clinical anaesthesia, other pain models or stimulation settings might be required to transfer preclinical studies into clinical practice. Clinical trial registration DRKS00017829.
Collapse
Affiliation(s)
- Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Björn Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Elias Dreismickenbecker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Center for Pediatric and Adolescent Medicine, Childhood Cancer Center, University Medical Center Mainz, Mainz, Germany
| | - Darren Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sebastian Zinn
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Electroencephalogram-based prediction and detection of responsiveness to noxious stimulation in critical care patients: a retrospective single-centre analysis. Br J Anaesth 2023; 130:e339-e350. [PMID: 36411130 DOI: 10.1016/j.bja.2022.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Monitoring of pain and nociception in critical care patients unable to self-report pain remains a challenge, as clinical signs are neither sensitive nor specific. Available technical approaches are limited by various constraints. We investigated the electroencephalogram (EEG) for correlates that precede or coincide with behavioural nociceptive responses to noxious stimulation. METHODS In this retrospective study, we analysed frontal EEG recordings of 64 critical care patients who were tracheally intubated and ventilated before, during, and after tracheal suctioning. We investigated EEG power bands for correlates preceding or coinciding with behavioural responses (Behavioural Pain Scale ≥7). We applied the Mann-Whitney U-test to calculate corresponding P-values. RESULTS Strong behavioural responses were preceded by higher normalised power in the 2.5-5 Hz band (+17.1%; P<0.001) and lower normalised power in the 0.1-1.5 Hz band (-10.5%; P=0.029). After the intervention, strong behavioural responses were associated with higher normalised EEG power in the 2.5-5 Hz band (+16.6%; P=0.021) and lower normalised power in the 8-12 Hz band (-51.2%; P=0.037) CONCLUSIONS: We observed correlates in EEG band power that precede and coincide with behavioural responses to noxious stimulation. Based on previous findings, some of the power bands could be linked to processing of nociception, arousal, or sedation effects. The power bands more closely related to nociception and arousal could be used to improve monitoring of nociception and to optimise analgesic management in critical care patients. CLINICAL TRIAL REGISTRATION DRKS00011206.
Collapse
|
8
|
Pujol J, Martínez-Vilavella G, Gallart L, Blanco-Hinojo L, Pacreu S, Bonhomme V, Deus J, Pérez-Sola V, Gambús PL, Fernández-Candil J. Effects of remifentanil on brain responses to noxious stimuli during deep propofol sedation. Br J Anaesth 2023; 130:e330-e338. [PMID: 35973838 DOI: 10.1016/j.bja.2022.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The safety of anaesthesia has improved as a result of better control of anaesthetic depth. However, conventional monitoring does not inform on the nature of nociceptive processes during unconsciousness. A means of inferring the quality of potentially painful experiences could derive from analysis of brain activity using neuroimaging. We have evaluated the dose effects of remifentanil on brain response to noxious stimuli during deep sedation and spontaneous breathing. METHODS Optimal data were obtained in 26 healthy subjects. Pressure stimulation that proved to be moderately painful before the experiment was applied to the thumbnail. Functional MRI was acquired in 4-min periods at low (0.5 ng ml-1), medium (1 ng ml-1), and high (1.5 ng ml-1) target plasma concentrations of remifentanil at a stable background infusion of propofol adjusted to induce a state of light unconsciousness. RESULTS At low remifentanil doses, we observed partial activation in brain areas processing sensory-discriminative and emotional-affective aspects of pain. At medium doses, relevant changes were identified in structures highly sensitive to general brain arousal, including the brainstem, cerebellum, thalamus, auditory and visual cortices, and the frontal lobe. At high doses, no significant activation was observed. CONCLUSIONS The response to moderately intense focal pressure in pain-related brain networks is effectively eliminated with safe remifentanil doses. However, the safety margin in deep sedation-analgesia would be narrowed in minimising not only nociceptive responses, but also arousal-related biological stress.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital Del Mar, Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain.
| | | | - Lluís Gallart
- Department of Anesthesiology, Hospital Del Mar-IMIM, Barcelona, Spain; Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital Del Mar, Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Susana Pacreu
- Department of Anesthesiology, Hospital Del Mar-IMIM, Barcelona, Spain
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium; Anesthesia and Intensive Care Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital Del Mar, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Hospital Del Mar- IMIM, Pompeu I Fabra University, Barcelona, Spain
| | - Pedro L Gambús
- Systems Pharmacology Effect Control & Modeling Research Group, Anesthesiology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | | |
Collapse
|
9
|
Bertolizio G, Garbin M, Ingelmo PM. Evaluation of Nociception during Pediatric Surgery: A Topical Review. J Pers Med 2023; 13:260. [PMID: 36836492 PMCID: PMC9964458 DOI: 10.3390/jpm13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The association between intraoperative nociception and increased patient's morbidity is well established. However, hemodynamic parameters, such as heart rate and blood pressure, may result in an inadequate monitor of nociception during surgery. Over the last two decades, different devices have been marketed to "reliably" detect intraoperative nociception. Since the direct measure of nociception is impractical during surgery, these monitors measures nociception surrogates such as sympathetic and parasympathetic nervous systems responses (heart rate variability, pupillometry, skin conductance), electroencephalographic changes, and muscular reflex arc. Each monitor carries its own advantages and disadvantages. The manuscript aims to give an overview of the most up-to-date information available in the literature on current nociceptor monitors available in clinical practice, with particular focus on their applications in pediatrics.
Collapse
Affiliation(s)
- Gianluca Bertolizio
- Department of Pediatric Anesthesiology, Montreal Children’s Hospital, Montreal, QC H4A 3J1, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Marta Garbin
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Pablo M. Ingelmo
- Department of Pediatric Anesthesiology, Montreal Children’s Hospital, Montreal, QC H4A 3J1, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC H4A 3J1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
10
|
Mirra A, Casoni D, Barge P, Hight D, Levionnois O, Spadavecchia C. Usability of the SedLine® electroencephalographic monitor of depth of anaesthesia in pigs: a pilot study. J Clin Monit Comput 2022; 36:1635-1646. [PMID: 35059913 PMCID: PMC9637619 DOI: 10.1007/s10877-022-00807-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
To investigate the usability of the SedLine® monitor in anaesthetized pigs. Five juvenile healthy pigs underwent balanced isoflurane-based general anaesthesia for surgical placement of a subcutaneous jugular venous port. The SedLine® was applied to continuously monitor electroencephalographic (EEG) activity and its modulation during anaesthesia. Computer tomography and magnetic resonance were performed to investigate the relationship between electrodes' positioning and anatomical structures. The pediatric SedLine® EEG-sensor could be easily applied and SedLine®-generated variables collected. An EEG Density Spectral Array (DS) was displayed over the whole procedure. During surgery, the EEG signal was dominated by elevated power in the delta range (0.5-4 Hz), with an underlying broadband signal (where power decreased with increasing frequency). The emergence period was marked by a decrease in delta power, and a more evenly distributed power over the 4-40 Hz frequency range. From incision to end of surgery, mean SedLine®-generated values (± standard deviation) were overall stable [23.0 (± 2.8) Patient State Index (PSI), 1.0% (± 3.8%) Suppression Ratio (SR), 8.8 Hz (± 2.5 Hz) Spectral Edge Frequency 95% (SEF) left, 7.7 Hz (± 2.4 Hz) SEF right], quickly changing during emergence [75.3 (± 11.1) PSI, 0.0 (± 0.0) SR, 12.5 (± 6.6) SEF left 10.4 (± 6.6) SEF right]. Based on the imaging performed, the sensor does not record EEG signals from the same brain areas as in humans. SedLine®-DSA and -generated variables seemed to reflect variations in depth of anaesthesia in pigs. Further studies are needed to investigate this correlation, as well as to define the species-specific brain structures monitored by the EEG-sensor.
Collapse
Affiliation(s)
- A Mirra
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - D Casoni
- Department for Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - P Barge
- Division of Clinical Radiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - D Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - O Levionnois
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Spadavecchia
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Fujii R, Awaga Y, Nozawa K, Matsushita M, Hama A, Natsume T, Takamatsu H. Regional brain activation during rectal distention and attenuation with alosetron in a nonhuman primate model of irritable bowel syndrome. FASEB Bioadv 2022; 4:694-708. [PMID: 36349296 PMCID: PMC9635009 DOI: 10.1096/fba.2022-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 09/08/2024] Open
Abstract
Greater understanding of the mechanism that mediates visceral pain and hypersensitivity associated with irritable bowel syndrome (IBS) would facilitate the development of effective therapeutics to manage these symptoms. An objective marker associated with the underlying mechanisms of visceral pain and hypersensitivity could be used to guide therapeutic development. The current study examined brain activation evoked by rectal distention with functional magnetic resonance imaging (fMRI) in a cynomolgus macaque model of visceral hypersensitivity. Male, cynomolgus macaques underwent five four-week treatments of dextran sodium sulfate (DSS)-distilled water (DW), which induced mild-moderate colitis with remission during each treatment cycle. Balloon rectal distention (RD) was performed under anesthesia 14 weeks after the final DSS-DW treatment. Colonoscopy confirmed the absence of colitis prior to the start of RD. In naïve, untreated macaques, 10, 20 and 30 ml RD did not evoke brain activation. However, insular cortex/somatosensory II cortex and cerebellum were significantly activated in DSS-treated macaques at 20 and 30 ml rectal distention. Intra-rectal pressure after DSS treatment was not significantly different from that of naïve, untreated macaques, indicating lack of alteration of rectal functioning following DSS-treatment. Treatment with 5-HT3 receptor antagonist alosetron (p.o.) reduced distension-evoked brain activation and decreased intra-rectal pressure. The current findings demonstrated activation of brain regions to RD following DSS treatments which was not present in naïve macaques, suggesting visceral hypersensitivity. Brain activation in turn was reduced by alosetron, which could underlie the analgesic effect alosetron in IBS patients.
Collapse
Affiliation(s)
| | - Yuji Awaga
- Hamamatsu Pharma Research, Inc.HamamatsuJapan
| | | | | | - Aldric Hama
- Hamamatsu Pharma Research, Inc.HamamatsuJapan
| | | | | |
Collapse
|
12
|
Intraoperative Assessment of Surgical Stress Response Using Nociception Monitor under General Anesthesia and Postoperative Complications: A Narrative Review. J Clin Med 2022; 11:jcm11206080. [PMID: 36294399 PMCID: PMC9604770 DOI: 10.3390/jcm11206080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
We present a narrative review focusing on the new role of nociception monitor in intraoperative anesthetic management. Higher invasiveness of surgery elicits a higher degree of surgical stress responses including neuroendocrine-metabolic and inflammatory-immune responses, which are associated with the occurrence of major postoperative complications. Conversely, anesthetic management mitigates these responses. Furthermore, improper attenuation of nociceptive input and related autonomic effects may induce increased stress response that may adversely influence outcome even in minimally invasive surgeries. The original role of nociception monitor, which is to assess a balance between nociception caused by surgical trauma and anti-nociception due to anesthesia, may allow an assessment of surgical stress response. The goal of this review is to inform healthcare professionals providing anesthetic management that nociception monitors may provide intraoperative data associated with surgical stress responses, and to inspire new research into the effects of nociception monitor-guided anesthesia on postoperative complications.
Collapse
|
13
|
Green S, Karunakaran KD, Peng K, Berry D, Kussman BD, Micheli L, Borsook D. Measuring "pain load" during general anesthesia. Cereb Cortex Commun 2022; 3:tgac019. [PMID: 35611143 PMCID: PMC9123643 DOI: 10.1093/texcom/tgac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Functional near-infrared spectroscopy (fNIRS) allows for ongoing measures of brain functions during surgery. The ability to evaluate cumulative effects of painful/nociceptive events under general anesthesia remains a challenge. Through observing signal differences and setting boundaries for when observed events are known to produce pain/nociception, a program can trigger when the concentration of oxygenated hemoglobin goes beyond ±0.3 mM from 25 s after standardization. Method fNIRS signals were retrieved from patients undergoing knee surgery for anterior cruciate ligament repair under general anesthesia. Continuous fNIRS measures were measured from the primary somatosensory cortex (S1), which is known to be involved in evaluation of nociception, and the medial polar frontal cortex (mPFC), which are both involved in higher cortical functions (viz. cognition and emotion). Results A ±0.3 mM threshold for painful/nociceptive events was observed during surgical incisions at least twice, forming a basis for a potential near-real-time recording of pain/nociceptive events. Evidence through observed true positives in S1 and true negatives in mPFC are linked through statistically significant correlations and this threshold. Conclusion Our results show that standardizing and observing concentrations over 25 s using the ±0.3 mM threshold can be an arbiter of the continuous number of incisions performed on a patient, contributing to a potential intraoperative pain load index that correlates with post-operative levels of pain and potential pain chronification.
Collapse
Affiliation(s)
- Stephen Green
- Corresponding author: 77 Lab, Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States.
| | - Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Ke Peng
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Barry David Kussman
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Lyle Micheli
- Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States
| | - David Borsook
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada,Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States,Departments of Psychiatry and Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, United States
| |
Collapse
|
14
|
Sieberg CB, Karunakaran KD, Kussman B, Borsook D. Preventing pediatric chronic postsurgical pain: Time for increased rigor. Can J Pain 2022; 6:73-84. [PMID: 35528039 PMCID: PMC9067470 DOI: 10.1080/24740527.2021.2019576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
Chronic postsurgical pain (CPSP) results from a cascade of events in the peripheral and central nervous systems following surgery. Several clinical predictors, including the prior pain state, premorbid psychological state (e.g., anxiety, catastrophizing), intraoperative surgical load (establishment of peripheral and central sensitization), and acute postoperative pain management, may contribute to the patient's risk of developing CPSP. However, research on the neurobiological and biobehavioral mechanisms contributing to pediatric CPSP and effective preemptive/treatment strategies are still lacking. Here we evaluate the perisurgical process by identifying key problems and propose potential solutions for the pre-, intra-, and postoperative pain states to both prevent and manage the transition of acute to chronic pain. We propose an eight-step process involving preemptive and preventative analgesia, behavioral interventions, and the use of biomarkers (brain-based, inflammatory, or genetic) to facilitate timely evaluation and treatment of premorbid psychological factors, ongoing surgical pain, and postoperative pain to provide an overall improved outcome. By achieving this, we can begin to establish personalized precision medicine for children and adolescents presenting to surgery and subsequent treatment selection.
Collapse
Affiliation(s)
- Christine B. Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Barry Kussman
- Department of Anesthesiology, Critical Care, & Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
| | - David Borsook
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Vazquez PM, Jensen EW. Different perspectives for monitoring nociception during general anesthesia. Korean J Anesthesiol 2022; 75:112-123. [PMID: 35172074 PMCID: PMC8980281 DOI: 10.4097/kja.22002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Safe anesthesia is achieved using objective methods that estimate the patient’s state during different phases of surgery. A patient’s state under anesthesia is characterized by three major aspects, which are linked to the main effects produced by each of the families of anesthetic agents administered: hypnosis, analgesia, and muscular relaxation. While quantification techniques designed to assess muscular relaxation under neuromuscular blocking agents have a relatively long history with a high degree of standardization and understanding (e.g., the train-of-four), the knowledge and techniques used to the depth of hypnosis assessment suffer from a lesser degree in both standardization and interpretation due to brain complexity. The problem of standardization and interpretation in the analgesia and nociception assessment increases since it involves more systems, the central nervous system, and the autonomic nervous system. This helps to explain why there are multiple a priori valid approaches to develop nociception monitoring from different interpretations and physiological bases of noxious stimuli processing. Thus, in this review, the current monitoring technologies clinically available for estimating a patient’s nociception under general anesthesia are described.
Collapse
Affiliation(s)
- Pablo Martinez Vazquez
- Deutsches Primaten Zentrum (DPZ), 37077 Goettingen, Germany.,R&D of Quantium Medical/Fresenius Kabi. Barcelona, Spain
| | - Erik Weber Jensen
- R&D of Quantium Medical/Fresenius Kabi. Barcelona, Spain.,Automatic Control and Information (ESAII) Department, CREB. UPC-Barcelonatech, Barcelona, Spain
| |
Collapse
|
16
|
Green S, Karunakaran KD, Labadie R, Kussman B, Mizrahi-Arnaud A, Morad AG, Berry D, Zurakowski D, Micheli L, Peng K, Borsook D. fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia. NEUROPHOTONICS 2022; 9:015002. [PMID: 35111876 PMCID: PMC8794294 DOI: 10.1117/1.nph.9.1.015002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) has evaluated pain in awake and anesthetized states. Aim: We evaluated fNIRS signals under general anesthesia in patients undergoing knee surgery for anterior cruciate ligament repair. Approach: Patients were split into groups: those with regional nerve block (NB) and those without (non-NB). Continuous fNIRS measures came from three regions: the primary somatosensory cortex (S1), known to be involved in evaluation of nociception, the lateral prefrontal cortex (BA9), and the polar frontal cortex (BA10), both involved in higher cortical functions (such as cognition and emotion). Results: Our results show three significant differences in fNIRS signals to incision procedures between groups: (1) NB compared with non-NB was associated with a greater net positive hemodynamic response to pain procedures in S1; (2) dynamic correlation between the prefrontal cortex (PreFC) and S1 within 1 min of painful procedures are anticorrelated in NB while positively correlated in non-NB; and (3) hemodynamic measures of activation were similar at two separate time points during surgery (i.e., first and last incisions) in PreFC and S1 but showed significant differences in their overlap. Comparing pain levels immediately after surgery and during discharge from postoperative care revealed no significant differences in the pain levels between NB and non-NB. Conclusion: Our data suggest multiple pain events that occur during surgery using devised algorithms could potentially give a measure of "pain load." This may allow for evaluation of central sensitization (i.e., a heightened state of the nervous system where noxious and non-noxious stimuli is perceived as painful) to postoperative pain levels and the resulting analgesic consumption. This evaluation could potentially predict postsurgical chronic neuropathic pain.
Collapse
Affiliation(s)
- Stephen Green
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Robert Labadie
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Barry Kussman
- Boston Children’s Hospital, Harvard Medical School, Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Arielle Mizrahi-Arnaud
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Andrea Gomez Morad
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Delany Berry
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - David Zurakowski
- Boston Children’s Hospital, Harvard Medical School, Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Lyle Micheli
- Boston Children’s Hospital, Harvard Medical School, Sports Medicine Division, Department of Orthopedic Surgery, Boston, Massachusetts, United States
| | - Ke Peng
- Université de Montréal, Département en Neuroscience, Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Departments of Psychiatry and Radiology, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Nitzschke R, Fischer M, Funcke S. Nociception level: what's in a name? Br J Anaesth 2021; 128:e49-e50. [PMID: 34844729 DOI: 10.1016/j.bja.2021.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rainer Nitzschke
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marlene Fischer
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Funcke
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Rhythmic Change of Cortical Hemodynamic Signals Associated with Ongoing Nociception in Awake and Anesthetized Individuals: An Exploratory Functional Near Infrared Spectroscopy Study. Anesthesiology 2021; 135:877-892. [PMID: 34610092 DOI: 10.1097/aln.0000000000003986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Patients undergoing surgical procedures are vulnerable to repetitive evoked or ongoing nociceptive barrage. Using functional near infrared spectroscopy, the authors aimed to evaluate the cortical hemodynamic signal power changes during ongoing nociception in healthy awake volunteers and in surgical patients under general anesthesia. The authors hypothesized that ongoing nociception to heat or surgical trauma would induce reductions in the power of cortical low-frequency hemodynamic oscillations in a similar manner as previously reported using functional magnetic resonance imaging for ongoing pain. METHODS Cortical hemodynamic signals during noxious stimuli from the fontopolar cortex were evaluated in two groups: group 1, a healthy/conscious group (n = 15, all males) where ongoing noxious and innocuous heat stimulus was induced by a contact thermode to the dorsum of left hand; and group 2, a patient/unconscious group (n = 13, 3 males) receiving general anesthesia undergoing knee surgery. The fractional power of low-frequency hemodynamic signals was compared across stimulation conditions in the healthy awake group, and between patients who received standard anesthesia and those who received standard anesthesia with additional regional nerve block. RESULTS A reduction of the total fractional power in both groups-specifically, a decrease in the slow-5 frequency band (0.01 to 0.027 Hz) of oxygenated hemoglobin concentration changes over the frontopolar cortex-was observed during ongoing noxious stimuli in the healthy awake group (paired t test, P = 0.017; effect size, 0.70), and during invasive procedures in the surgery group (paired t test, P = 0.003; effect size, 2.16). The reduction was partially reversed in patients who received a regional nerve block that likely diminished afferent nociceptive activity (two-sample t test, P = 0.002; effect size, 2.34). CONCLUSIONS These results suggest common power changes in slow-wave cortical hemodynamic oscillations during ongoing nociceptive processing in conscious and unconscious states. The observed signal may potentially promote future development of a surrogate signal to assess ongoing nociception under general anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
19
|
Abstract
The intraoperative dosing of opioids is a challenge in routine anesthesia as the potential effects of intraoperative overdosing and underdosing are not completely understood. In recent years an increasing number of monitors were approved, which were developed for the detection of intraoperative nociception and therefore should enable a better control of opioid titration. The nociception monitoring devices use either continuous hemodynamic, galvanic or thermal biosignals reflecting the balance between parasympathetic and sympathetic activity, measure the pupil dilatation reflex or the nociceptive flexor reflex as a reflexive response to application of standardized nociceptive stimulation. This review article presents the currently available nociception monitors. Most of these monitoring devices detect nociceptive stimulations with higher sensitivity and specificity than changes in heart rate, blood pressure or sedation depth monitoring devices. There are only few studies on the effect of opioid titration guided by nociception monitoring and the possible postoperative benefits of these devices. All nociception monitoring techniques are subject to specific limitations either due to perioperative confounders (e.g. hypovolemia) or special accompanying medical conditions (e.g. muscle relaxation). There is an ongoing discussion about the clinical relevance of nociceptive stimulation in general anesthesia and the effect on patient outcome. Initial results for individual monitor systems show a reduction in opioid consumption and in postoperative pain level. Nevertheless, current evidence does not enable the routine use of nociception monitoring devices to be recommended as a clear beneficial effect on long-term outcome has not yet been proven.
Collapse
|
20
|
Anesthesia and surgery induce a functional decrease in excitatory synaptic transmission in prefrontal cortex neurons, and intraoperative administration of dexmedetomidine does not elicit the synaptic dysfunction. Biochem Biophys Res Commun 2021; 572:27-34. [PMID: 34332326 DOI: 10.1016/j.bbrc.2021.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Postoperative delirium (POD), a syndrome of confusion and inattention, frequently occurs after anesthesia and surgery. The prefrontal cortex (PFC) plays key roles in executive functions and cognitive controls. However, the neuropathogenesis of POD in the PFC remains largely unknown. We investigated whether anesthesia and surgery induced neurofunctional changes in the mouse PFC. After laparotomy was performed under isoflurane anesthesia, PFC neuronal activities were compared at the synaptic level using whole-cell patch-clamp recordings. A battery of behavioral tests measuring natural and learned behaviors, and effects of intraoperative dexmedetomidine were also examined. In the anesthesia/surgery group showing changes in natural and learned behaviors, the frequency of excitatory synaptic responses in PFC pyramidal neurons was decreased after the surgery without any changes in the response kinetics. On the other hand, neuronal intrinsic properties and inhibitory synaptic responses were not changed. In the anesthesia/surgery group administered intraoperative dexmedetomidine, the excitatory synaptic transmission and the behaviors were not altered. These results suggest that anesthesia and surgery induce a functional reduction selectively in the PFC excitatory synaptic transmission, and intraoperative dexmedetomidine inhibits the plastic change in the PFC excitatory synaptic input.
Collapse
|
21
|
Abstract
Nociception refers to the process of encoding and processing noxious stimuli. Its monitoring can have potential benefits. Under anesthesia, nociceptive signals are continuously generated to cause involuntary effects on the autonomic nervous system, reflex movement, and stress response. Most available systems depend on the identification and measurement of these indirect effects to indicate nociception-antinociception balance. Despite advances in monitoring technology and availability, their limitations presently override their benefits. Hence, their utility and applicability in present-day anesthesia care is uncertain. Future technologies might allow automated closed-loop multimodal anesthesia systems, which includes the components of hypnosis and analgesic balance for a patient.
Collapse
Affiliation(s)
- Harsha Shanthanna
- Department of Anesthesia, and Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Vishal Uppal
- Department of Anesthesia, Dalhousie University, Nova Scotia Health Authority and IWK Health Centre, 5th Floor, Halifax Infirmary Site, Room 5452, 1796 Summer Street, Halifax B3H 3A7, Canada
| | - Girish P Joshi
- The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9068, USA
| |
Collapse
|
22
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
23
|
Coulombe MA, Décary E, Maximos S, Brulotte V, Drolet P, Tanoubi I, Issa R, Zaphiratos V, Verdonck O, Fortier LP, Godin N, Idrissi M, Raft J, Richebé P. Assessing the antinociceptive effect of nitrous oxide to tetanic stimulation in anaesthetised patients with new intra-operative nociception monitors: An observational study. Eur J Anaesthesiol 2021; 38:512-523. [PMID: 33399383 DOI: 10.1097/eja.0000000000001431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nitrous oxide (N2O) has been used since the 19th century for its analgesic, antinociceptive and anxiolytic effects during surgical procedures in awake and anaesthetised patients. However, quantification of noxious stimuli that occur under general anaesthesia is a constant challenge for anaesthesiologists, and recently two new indices have been developed to assess intra-operative nociception. OBJECTIVE The aim of this study was to quantify with new indices as well as with more classical clinical parameters the antinociceptive effect of N2O during general anaesthesia. DESIGN Prospective, open label, patient-blinded, observational and descriptive trial. SETTING Single-centre academic hospital. PARTICIPANTS Forty American Society of Anesthesiologists' physical status 1 to 3 patients undergoing general anaesthesia for elective abdominal surgery via laparotomy were recruited. MAIN OUTCOMES MEASURES Intra-operative pain was assessed using a standardised electrical stimulation of the forearm (tetanic stimulation at 70 mA, 100 Hz for 30 s), at 0, 25 and 50% inhaled N2O/O2. Heart rate (HR), mean arterial blood pressure, bispectral index, the analgesia nociception index and the nociception level (NOL) index were used to evaluate intra-operative nociception before and after each standardised tetanic stimulation. RESULTS There was a 16% reduction of the analgesia nociception index reaction, a 31% reduction of the NOL reaction and a 51% reduction of the HR reaction to a standardised electrical tetanic nociceptive stimulation during administration of 50% N2O. Administration of 50 or 25% inhaled N2O produced the same quality of antinociception based on HR and NOL index analyses. HR and the NOL index were the best parameters to identify the antinociceptive effect of intra-operatively administered N2O. CONCLUSION In anaesthetised patients, our study demonstrated clinically significant antinociceptive properties of N2O. Our results showed that low concentrations of N2O (25%) are as effective as higher concentrations (50%) to achieve a significant antinociceptive effect. These findings may help decrease negative effects of using higher concentrations of N2O, including its side effects and its environmental pollution. TRIAL REGISTRATION ClinicalTrials.gov registration identifier: NCT02701478.
Collapse
Affiliation(s)
- Marie-Andrée Coulombe
- From the Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de l'Est de l'Ile de Montreal, University of Montreal, Montreal, Quebec, Canada (M-AC, ED, SM, VB, PD, IT, RI, VZ, OV, L-PF, NG, MI, JR, PR)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Friedberg BL. BIS Monitoring Transformed Opioid-Free Propofol Ketamine Anesthesia From Art to Science for Ambulatory Cosmetic Surgery. Aesthetic Plast Surg 2020; 44:2308-2311. [PMID: 33037472 DOI: 10.1007/s00266-020-01987-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/20/2020] [Indexed: 12/28/2022]
Abstract
Measurement is the essence of science. The BIS™ brain monitor provides direct propofol response measurement. Measuring transformed the propofol ketamine technique from a qualitative approach to a quantitatively reproducible one. Propofol was originally titrated with an IV bag and a micro-drip IV set. Propofol response was titrated to clinical signs. An infusion pump later replaced the IV bag, enabling the propofol dose enumeration. The propofol effect was measured with a BIS.™ A statistically significant 30% propofol reduction was achieved with BIS™ monitoring. Patient movement occurred during propofol sedation. Secondary EMG trending to BIS™ enabled the differentiation of cortically based movement (i.e., deeper sedation indicated) from spinal cord-based movement (i.e., more local indicated). Outcomes were improved when surgeons re-injected vasoconstricted field with patient movement. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Barry L Friedberg
- Goldilocks Anesthesia Foundation, 15 White Cap Drive, Corona del Mar, CA, 92625, USA.
| |
Collapse
|
25
|
Funcke S, Pinnschmidt HO, Brinkmann C, Wesseler S, Beyer B, Fischer M, Nitzschke R. Nociception level-guided opioid administration in radical retropubic prostatectomy: a randomised controlled trial. Br J Anaesth 2020; 126:516-524. [PMID: 33228979 DOI: 10.1016/j.bja.2020.09.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This RCT investigated the effect of opioid titration by three different nociception monitoring devices or clinical signs during general anaesthesia. METHODS Ninety-six patients undergoing radical retropubic prostatectomy with propofol/remifentanil anaesthesia were randomised into one of four groups to receive remifentanil guided by one of three nociception monitoring devices (surgical pleth index [SPI], pupillary pain index [PPI], or nociception level [NOL]) or by clinical judgement (control). Intraoperative remifentanil requirement was the primary endpoint, whereas recovery parameters and stress hormone levels were secondary endpoints. RESULTS The mean [95% confidence interval {CI}] remifentanil administration rate differed between the groups: control 0.34 (0.32-0.37), SPI 0.46 (0.38-0.55), PPI 0.07 (0.06-0.08), and NOL 0.16 (0.12-0.21) μg kg-1 min-1(P<0.001). Intraoperative cessation of remifentanil administration occurred in different numbers (%) of patients: control 0 (0%), SPI 1 (4.3%), PPI 18 (75.0%), and NOL 11 (47.8%); P=0.002. The area under the curve analyses indicated differences in cumulative cortisol levels (mg L-1 min-1) amongst the groups: control 37.9 (33.3-43.1), SPI 38.6 (33.8-44.2), PPI 72.1 (63.1-82.3), and NOL 54.4 (47.6-62.1) (mean [95% CI]). Pairwise group comparison results were as follows: control vs SPI, P=0.830; control vs PPI, P<0.001; control vs NOL, P=0.001; SPI vs PPI, P<0.001; SPI vs NOL, P=0.002; and PPI vs NOL, P=0.009. CONCLUSIONS The nociception monitoring devices and clinical signs reflect the extent of nociception differently, leading to dissimilar doses of remifentanil. Very low remifentanil doses were associated with an increase and higher remifentanil doses were accompanied by a decrease in serum cortisol concentrations. Use of nociception monitoring devices for guiding intra-operative opioid dosing needs further validation. CLINICAL TRIAL REGISTRATION NCT03380949.
Collapse
Affiliation(s)
- Sandra Funcke
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Hamburg, Germany
| | | | - Charlotte Brinkmann
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Hamburg, Germany
| | - Stefan Wesseler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Hamburg, Germany
| | - Burkhard Beyer
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Hamburg, Germany
| | - Rainer Nitzschke
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Hamburg, Germany.
| |
Collapse
|
26
|
Bonhomme V, Staquet C, Montupil J, Defresne A, Kirsch M, Martial C, Vanhaudenhuyse A, Chatelle C, Larroque SK, Raimondo F, Demertzi A, Bodart O, Laureys S, Gosseries O. General Anesthesia: A Probe to Explore Consciousness. Front Syst Neurosci 2019; 13:36. [PMID: 31474839 PMCID: PMC6703193 DOI: 10.3389/fnsys.2019.00036] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
General anesthesia reversibly alters consciousness, without shutting down the brain globally. Depending on the anesthetic agent and dose, it may produce different consciousness states including a complete absence of subjective experience (unconsciousness), a conscious experience without perception of the environment (disconnected consciousness, like during dreaming), or episodes of oriented consciousness with awareness of the environment (connected consciousness). Each consciousness state may potentially be followed by explicit or implicit memories after the procedure. In this respect, anesthesia can be considered as a proxy to explore consciousness. During the recent years, progress in the exploration of brain function has allowed a better understanding of the neural correlates of consciousness, and of their alterations during anesthesia. Several changes in functional and effective between-region brain connectivity, consciousness network topology, and spatio-temporal dynamics of between-region interactions have been evidenced during anesthesia. Despite a set of effects that are common to many anesthetic agents, it is still uneasy to draw a comprehensive picture of the precise cascades during general anesthesia. Several questions remain unsolved, including the exact identification of the neural substrate of consciousness and its components, the detection of specific consciousness states in unresponsive patients and their associated memory processes, the processing of sensory information during anesthesia, the pharmacodynamic interactions between anesthetic agents, the direction-dependent hysteresis phenomenon during the transitions between consciousness states, the mechanisms of cognitive alterations that follow an anesthetic procedure, the identification of an eventual unitary mechanism of anesthesia-induced alteration of consciousness, the relationship between network effects and the biochemical or sleep-wake cycle targets of anesthetic agents, as well as the vast between-studies variations in dose and administration mode, leading to difficulties in between-studies comparisons. In this narrative review, we draw the picture of the current state of knowledge in anesthesia-induced unconsciousness, from insights gathered on propofol, halogenated vapors, ketamine, dexmedetomidine, benzodiazepines and xenon. We also describe how anesthesia can help understanding consciousness, we develop the above-mentioned unresolved questions, and propose tracks for future research.
Collapse
Affiliation(s)
- Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Javier Montupil
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Aline Defresne
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Murielle Kirsch
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Sensation & Perception Research Group, GIGA-Consciousness, Department of Algology, GIGA Institute, University of Liege, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivier Bodart
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| |
Collapse
|
27
|
Gómez-Ríos MÁ, Abad-Gurumeta A, Calvo-Vecino JM. Assessing nociception: steps towards intraoperative "full monitoring". Minerva Anestesiol 2018; 84. [DOI: 10.23736/s0375-9393.18.13191-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|