1
|
Liu HJ, Lin Y, Li W, Yang H, Kang WY, Guo PL, Guo XH, Cheng NN, Tan JC, He YN, Chen SS, Mu Y, Liu XW, Zhang H, Chen MF. Clinical practice of one-lung ventilation in mainland China: a nationwide questionnaire survey. BMC Anesthesiol 2025; 25:7. [PMID: 39773104 PMCID: PMC11706103 DOI: 10.1186/s12871-024-02879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Limited information is available regarding the application of lung-protective ventilation strategies during one-lung ventilation (OLV) across mainland China. A nationwide questionnaire survey was conducted to investigate this issue in current clinical practice. METHODS The survey covered various aspects, including respondent demographics, the establishment and maintenance of OLV, intraoperative monitoring standards, and complications associated with OLV. RESULTS Five hundred forty-three valid responses were collected from all provinces in mainland China. Volume control ventilation mode, 4 to 6 mL per kilogram of predictive body weight, pure oxygen inspiration, and a low-level positive end-expiratory pressure ≤ 5 cm H2O were the most popular ventilation parameters. The most common thresholds of intraoperative respiration monitoring were peripheral oxygen saturation (SpO2) of 90-94%, end-tidal CO2 of 45 to 55 mm Hg, and an airway pressure of 30 to 34 cm H2O. Recruitment maneuvers were traditionally performed by 94% of the respondents. Intraoperative hypoxemia and laryngeal injury were experienced by 75% and 51% of the respondents, respectively. The proportions of anesthesiologists who frequently experienced hypoxemia during OLV were 19%, 24%, and 7% for lung, cardiovascular, and esophageal surgeries, respectively. Up to 32% of respondents were reluctant to perform lung-protective ventilation strategies during OLV. Multiple regression analysis revealed that the volume-control ventilation mode and an SpO2 intervention threshold of < 85% were independent risk factors for hypoxemia during OLV in lung and cardiovascular surgeries. In esophageal surgery, working in a tier 2 hospital and using traditional ventilation strategies were independent risk factors for hypoxemia during OLV. Subgroup analysis revealed no significant difference in intraoperative hypoxemia during OLV between respondents who performed lung-protective ventilation strategies and those who did not. CONCLUSIONS Lung-protective ventilation strategies during OLV have been widely accepted in mainland China and are strongly recommended for esophageal surgery, particularly in tier 2 hospitals. Implementing volume control ventilation mode and early management of oxygen desaturation might prevent hypoxemia during OLV.
Collapse
Affiliation(s)
- Hong-Jin Liu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China
| | - Yong Lin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China
| | - Wang Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Hai Yang
- Department of Anesthesiology, The First People's Hospital of Yulin, Yulin, China
| | - Wen-Yue Kang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Pei-Lei Guo
- Department of Anesthesiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Hui Guo
- Department of Anesthesia and Surgery, The Third People's Hospital of Henan Province, Zhengzhou, China
| | - Ning-Ning Cheng
- Department of Anesthesiology, Binzhou People's Hospital, Binzhou, China
| | - Jie-Chao Tan
- Department of Anesthesiology, Shunde Hospital of South Medical University, Foshan, China
| | - Yi-Na He
- Department of Anesthesiology, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Sichuan, Nanchong, China
| | - Si-Si Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Mu
- Department of Anesthesiology, The Second Central Hospital of Baoding, Baoding, China
| | - Xian-Wen Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China.
| | - Mei-Fang Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China.
- Department of Physical Examination Center, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China.
| |
Collapse
|
2
|
Chen MF, Xie LF, Lin XF, Wu PP, Zhang JX, Lin Y. Lung protective ventilation guided by driving pressure improves pulmonary outcomes in heart transplantation. Sci Rep 2025; 15:856. [PMID: 39757297 DOI: 10.1038/s41598-025-85283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025] Open
Abstract
This study aimed to investigate whether driving pressure-guided ventilation can reduce postoperative pulmonary complications in patients who have undergone heart transplantation. Patients who underwent orthotopic heart transplantation were divided into two groups according to the perioperative ventilation strategy: (1) conventional lung-protective ventilation (group C) and (2) driving pressure-guided ventilation (group D). The primary outcome was the occurrence of postoperative pulmonary complications within 30 days of surgery. Univariate and multivariate logistic regression analyses were performed to evaluate the independent risk factors associated with postoperative pulmonary complications (PPCs). Compared with group C, patients in group D exhibited lower driving pressure. Oxygenation improved significantly in the early period after surgery in patients in group D. Group C exhibited a higher number of patients with postoperative pulmonary complications, especially respiratory infections and atelectasis. Patients in group D experienced a shorter duration of postoperative mechanical ventilation and a shorter stay in the intensive care unit. The conventional ventilation strategy, the high driving pressure level and the low PaO2 value at the end of the surgery were the independent risk factors for PPCs in heart transplantation. Compared with conventional lung-protective ventilation, driving pressure-guided ventilation was associated with improved pulmonary oxygenation and lower incidences of pulmonary complications among patients after heart transplantation.
Collapse
Affiliation(s)
- Mei-Fang Chen
- Department of Cardiovascular Surgery , Fujian Medical University Union Hospital , No. 29 Xinquan Road, Fujian, 350001, Fuzhou, China
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Lin-Feng Xie
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Xin-Fan Lin
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Ping-Ping Wu
- Department of Anesthesiology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia-Xin Zhang
- Department of Cardiovascular Surgery , Fujian Medical University Union Hospital , No. 29 Xinquan Road, Fujian, 350001, Fuzhou, China
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Yong Lin
- Department of Cardiovascular Surgery , Fujian Medical University Union Hospital , No. 29 Xinquan Road, Fujian, 350001, Fuzhou, China.
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Zhu C, Zhang R, Li J, Ren L, Gu Z, Wei R, Zhang M. Association of mechanical power and postoperative pulmonary complications among young children undergoing video-assisted thoracic surgery: A retrospective study. Eur J Anaesthesiol 2025; 42:64-72. [PMID: 39628416 PMCID: PMC11620292 DOI: 10.1097/eja.0000000000002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
BACKGROUND Previous studies have discussed the correlation between mechanical power (MP) and lung injury. However, evidence regarding the relationship between MP and postoperative pulmonary complications (PPCs) in children remains limited, specifically during one-lung ventilation (OLV). OBJECTIVES Propensity score matching was employed to generate low MP and high MP groups to verify the relationship between MP and PPCs. Multivariable logistic regression was performed to identify risk factors of PPCs in young children undergoing video-assisted thoracic surgery (VATS). DESIGN A retrospective study. SETTING Single-site tertiary children's hospital. PATIENTS Children aged ≤2 years who underwent VATS between January 2018 and February 2023. INTERVENTIONS None. MAIN OUTCOME MEASURES The incidence of PPCs. RESULTS Overall, 581 (median age, 6 months [interquartile range: 5-9.24 months]) children were enrolled. The median [interquartile range] MP during OLV were 2.17 [1.84 to 2.64) J min-1. One hundred and nine (18.76%) children developed PPCs. MP decreased modestly during the study period (2.63 to 1.99 J min-1; P < 0.0001). In the propensity score matched cohort for MP (221 matched pairs), MP (median MP 2.63 vs. 1.84 J min-1) was not associated with a reduction in PPCs (adjusted odds ratio, 1.43; 95% CI, 0.87 to 2.37; P = 0.16). In the propensity score matched cohort for dynamic components of MP (139 matched pairs), dynamic components (mean 2.848 vs. 4.162 J min-1) was not associated with a reduction in PPCs (adjusted odds ratio, 1.62; 95% CI, 0.85 to 3.10; P = 0.15).The multiple logistic analysis revealed PPCs within 7 days of surgery were associated with male gender, OLV duration >90 min, less surgeon's experience and lower positive end-expiratory pressure (PEEP) value. CONCLUSIONS MP and dynamic components were not associated with PPCs in young children undergoing VATS, whereas PPCs were associated with male gender, OLV duration >90 min, less surgeon's experience and lower PEEP value. TRIAL REGISTRATION ChiCTR2300074649.
Collapse
Affiliation(s)
- Change Zhu
- From the Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai (CZ, MZ), Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (LR, ZG, RW), Cardiothoracic Surgery Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (RZ, JL)
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhu C, Zhang M, Zhang S, Zhang R, Wei R. Lung-protective ventilation and postoperative pulmonary complications during pulmonary resection in children: A prospective, single-centre, randomised controlled trial. Eur J Anaesthesiol 2024; 41:889-897. [PMID: 39238348 PMCID: PMC11556870 DOI: 10.1097/eja.0000000000002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Children are more susceptible to postoperative pulmonary complications (PPCs) due to their smaller functional residual capacity and higher closing volume; however, lung-protective ventilation (LPV) in children requiring one-lung ventilation (OLV) has been relatively underexplored. OBJECTIVES To evaluate the effects of LPV and driving pressure-guided ventilation on PPCs in children with OLV. DESIGN Randomised, controlled, double-blind study. SETTING Single-site tertiary hospital, 6 May 2022 to 31 August 2023. PATIENTS 213 children aged < 6 years, planned for lung resection secondary to congenital cystic adenomatoid malformation. INTERVENTIONS Children were randomly assigned to LPV ( n = 142) or control ( n = 71) groups. Children in LPV group were randomly assigned to either driving pressure group ( n = 70) receiving individualised positive end-expiratory pressure (PEEP) to deliver the lowest driving pressure or to conventional protective ventilation group ( n = 72) with fixed PEEP of 5 cmH 2 O. MAIN OUTCOME MEASURES The primary outcome was the incidence of PPCs within 7 days after surgery. Secondary outcomes were pulmonary mechanics, oxygenation and mechanical power. RESULTS The incidence of PPCs did not differ between the LPV (24/142, 16.9%) and the control groups (15/71, 21.1%) ( P = 0.45). The driving pressure was lower in the driving pressure group than in the 5 cmH 2 O PEEP group (15 vs. 17 cmH 2 O; P = 0.001). Lung compliance and oxygenation were higher while the dynamic component of mechanical power was lower in the driving pressure group than in the 5 cmH 2 O PEEP group. The incidence of PPCs did not differ between the driving pressure (11/70, 15.7%) and the 5 cmH 2 O PEEP groups (13/72, 18.1%) ( P = 0.71). CONCLUSIONS LPV did not decrease the occurrence of PPCs compared to non-protective ventilation. Although lung compliance and oxygenation were higher in the driving pressure group than in the 5 cmH 2 O PEEP group, these benefits did not translate into significant reductions in PPCs. However, the study is limited by a small sample size, which may affect the interpretation of the results. Future research with larger sample sizes is necessary to confirm these findings. TRIAL REGISTRATION ChiCTR2200059270.
Collapse
Affiliation(s)
- Change Zhu
- From the Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (CZ, SZ, RW), Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (CZ, MZ), Cardiothoracic Surgery Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (RZ)
| | | | | | | | | |
Collapse
|
5
|
Li X, Yang Y, Zhang Q, Zhu Y, Xu W, Zhao Y, Liu Y, Xue W, Yan P, Li S, Huang J, Fang Y. Association between thoracic epidural anesthesia and driving pressure in adult patients undergoing elective major upper abdominal surgery: a randomized controlled trial. BMC Anesthesiol 2024; 24:434. [PMID: 39604861 PMCID: PMC11600644 DOI: 10.1186/s12871-024-02808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Thoracic epidural anesthesia (TEA) is associated with a knowledge gap regarding its mechanisms in lung protection and reduction of postoperative pulmonary complications (PPCs). Driving pressure (ΔP), an alternative indicator of alveolar strain, is closely linked to reduced PPCs with lower ΔP values. We aim to investigate whether TEA contributes to lung protection by lowering ΔP during mechanical ventilation. METHODS In this prospective, randomized, patient and evaluator-blinded parallel study, adult patients scheduled for elective major upper abdominal surgery were assigned to either the TEA group with combined thoracic epidural anesthesia and general anesthesia (TEA-GA) (n = 30) or the control group with only general anesthesia (GA) (n = 30). MEASUREMENTS The primary outcome was the minimum ΔP determined based on positive end-expiratory pressure (PEEP) after intubation. Secondary outcomes included the incidence of PPCs within seven days, the minimum ΔP at various time points, blood gas analysis, intensive care unit (ICU) admission rates, length of hospital stay, and 30-day mortality rate. RESULTS The TEA group had a significantly lower minimum ΔP titrated based on PEEP compared to the control group (11.23 ± 2.19 cmH2O vs. 12.67 ± 2.70 cmH2O; P = 0.028). Multivariate linear regression analysis showed that intraoperative TEA application (compared with its absence; unstandardized beta coefficient (B) = -1.289; P = 0.008) significantly correlated with ΔP. The incidence of PPCs did not differ significantly between the two groups (8 of 30 [26.7%] vs. 12 of 30 [40%]; P = 0.273), but the incidence of atelectasis in the TEA group was significantly lower than in the control group (5 of 30 [16.7%] vs. 12 of 30 [40.7%]; P = 0.012). Multivariate logistic regression analysis indicated that ΔP was the only variable significantly associated with PPCs (Adjusted Odds Ratio [OR] = 2.190; 95% Confidence Interval [CI]: 1.300 to 3.689; P = 0.003). CONCLUSION Compared to GA, TEA-GA can reduce intraoperative ΔP in patients undergoing major upper abdominal surgery, especially those undergoing laparoscopic surgery. However, compared to GA combined with ΔP-guided ventilation, TEA-GA combined with ΔP-guided ventilation does not reduce the risk of PPCs. There was no significant difference in the total use of various vasoactive drugs between the two groups. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (registration number ChiCTR2300068778 date of registration February 28, 2023).
Collapse
Affiliation(s)
- Xuan Li
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Yang
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qinyu Zhang
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuyang Zhu
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenxia Xu
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yufei Zhao
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuan Liu
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenqiang Xue
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Yan
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuang Li
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Huang
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Yu Fang
- Department of anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Wachtendorf LJ, Ahrens E, Suleiman A, von Wedel D, Tartler TM, Rudolph MI, Redaelli S, Santer P, Munoz-Acuna R, Santarisi A, Calderon HN, Kiyatkin ME, Novack L, Talmor D, Eikermann M, Schaefer MS. The association between intraoperative low driving pressure ventilation and perioperative healthcare-associated costs: A retrospective multicenter cohort study. J Clin Anesth 2024; 98:111567. [PMID: 39191081 DOI: 10.1016/j.jclinane.2024.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
STUDY OBJECTIVE A low dynamic driving pressure during mechanical ventilation for general anesthesia has been associated with a lower risk of postoperative respiratory complications (PRC), a key driver of healthcare costs. It is, however, unclear whether maintaining low driving pressure is clinically relevant to measure and contain costs. We hypothesized that a lower dynamic driving pressure is associated with lower costs. DESIGN Multicenter retrospective cohort study. SETTING Two academic healthcare networks in New York and Massachusetts, USA. PATIENTS 46,715 adult surgical patients undergoing general anesthesia for non-ambulatory (inpatient and same-day admission) surgery between 2016 and 2021. INTERVENTIONS The primary exposure was the median intraoperative dynamic driving pressure. MEASUREMENTS The primary outcome was direct perioperative healthcare-associated costs, which were matched with data from the Healthcare Cost and Utilization Project-National Inpatient Sample (HCUP-NIS) to report absolute differences in total costs in United States Dollars (US$). We assessed effect modification by patients' baseline risk of PRC (score for prediction of postoperative respiratory complications [SPORC] ≥ 7) and effect mediation by rates of PRC (including post-extubation saturation < 90%, re-intubation or non-invasive ventilation within 7 days) and other major complications. MAIN RESULTS The median intraoperative dynamic driving pressure was 17.2cmH2O (IQR 14.0-21.3cmH2O). In adjusted analyses, every 5cmH2O reduction in dynamic driving pressure was associated with a decrease of -0.7% in direct perioperative healthcare-associated costs (95%CI -1.3 to -0.1%; p = 0.020). When a dynamic driving pressure below 15cmH2O was maintained, -US$340 lower total perioperative healthcare-associated costs were observed (95%CI -US$546 to -US$132; p = 0.001). This association was limited to patients at high baseline risk of PRC (n = 4059; -US$1755;97.5%CI -US$2495 to -US$986; p < 0.001), where lower risks of PRC and other major complications mediated 10.7% and 7.2% of this association (p < 0.001 and p = 0.015, respectively). CONCLUSIONS Intraoperative mechanical ventilation targeting low dynamic driving pressures could be a relevant measure to reduce perioperative healthcare-associated costs in high-risk patients.
Collapse
Affiliation(s)
- Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Queen Rania St, Amman, 11942, Jordan; Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America.
| | - Dario von Wedel
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Tim M Tartler
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America
| | - Maíra I Rudolph
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Strasse 62, Cologne 50937, Germany.
| | - Simone Redaelli
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America; School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy.
| | - Peter Santer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Ricardo Munoz-Acuna
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Abeer Santarisi
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Department of Accident and Emergency Medicine, Jordan University Hospital, Queen Rania St, Amman 11942, Jordan.
| | - Harold N Calderon
- Department of Finance, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States of America.
| | - Michael E Kiyatkin
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America.
| | - Lena Novack
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America.
| | - Matthias Eikermann
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany.
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America; Department of Anesthesiology, Duesseldorf University Hospital, Moorenstraße 5, Duesseldorf 40225, Germany.
| |
Collapse
|
7
|
Cheng M, Xu F, Wang W, Li W, Xia R, Ji H, Lv S, Shi X, Zhang C. Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial. Minerva Anestesiol 2024; 90:969-978. [PMID: 39545653 DOI: 10.23736/s0375-9393.24.18209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND The reduction in functional residual capacity (FRC) is a significant pathological factor in the development of postoperative pulmonary complications. Appropriate positive end-expiratory pressure (PEEP) is critical to preserve FRC during mechanical ventilation. Our previous study suggests that using driving pressure-guided PEEP can reduce postoperative pulmonary complications. In this study, we hypothesize that individualized PEEP can increase immediate postoperative FRC and improve lung ventilation. METHODS This single-centered, randomized controlled trial included a total of 91 patients scheduled for laparoscopic surgery for colorectal carcinoma. Patients were randomly assigned to receive individualized PEEP guided by minimum driving pressure or a fixed PEEP of six cmH2O. The primary outcome was postoperative FRC. Secondary outcomes included the incidence of postoperative pulmonary complications, postoperative Oxygenation Index, alveolar-arterial oxygen tension difference (PA-aO2), intrapulmonary shunt (QS/QT), and Respiratory Index, as well as lung ventilation measured by electrical impedance tomography. RESULTS The median value of PEEP in the individualized group was 14 cmH2O, with an interquartile range of 12-14 cmH2O. The postoperative FRC was significantly higher in the individualized PEEP group than that in the PEEP six cmH2O group (32.8 [12.8] vs. 25.0 [12.6] mL/kg, P=0.004). Patients receiving driving pressure-guided PEEP also had significantly higher Oxygenation Index, better ventilation distribution, and lower PA-aO2, QS/QT, and Respiratory Index. CONCLUSIONS Driving pressure-guided PEEP can preserve postoperative FRC and provide better ventilation and oxygenation for patients undergoing laparoscopic colorectal surgery.
Collapse
Affiliation(s)
- Muqiao Cheng
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengying Xu
- Department of Anesthesiology, N.971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Li
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ran Xia
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haiying Ji
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunan Lv
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengmi Zhang
- Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China -
| |
Collapse
|
8
|
Liu J, Xue D, Wang L, Li Y, Liu L, Liao G, Cao J, Liu Y, Lou J, Li H, Yang Y, Mi W, Fu Q. Development and validation of a nomogram for predicting pulmonary complications in elderly patients undergoing thoracic surgery. Aging Clin Exp Res 2024; 36:197. [PMID: 39368046 PMCID: PMC11455794 DOI: 10.1007/s40520-024-02844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/29/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Postoperative pulmonary complications (PPCs) remain a prevalent concern among elderly patients undergoing surgery, with a notably higher incidence observed in elderly patients undergoing thoracic surgery. This study aimed to develop a nomogram to predict the risk of PPCs in this population. METHODS A total of 2963 elderly patients who underwent thoracic surgery were enrolled and randomly divided into a training cohort (80%, n = 2369) or a validation cohort (20%, n = 593). Univariate and multivariate logistic regression analyses were conducted to identify risk factors for PPCs, and a nomogram was developed based on the findings from the training cohort. The validation cohort was used to validate the model. The predictive accuracy of the model was evaluated by receiver operating characteristic (ROC) curve, area under ROC (AUC), calibration curve, and decision curve analysis (DCA). RESULTS A total of 918 (31.0%) patients reported PPCs. Nine independent risk factors for PPCs were identified: preoperative presence of chronic obstructive pulmonary disease (COPD), elevated leukocyte count, higher partial pressure of arterial carbon dioxide (PaCO2) level, surgical site, thoracotomy, intraoperative hypotension, blood loss > 100 mL, surgery duration > 180 min, and malignant tumor. The AUC value for the training cohort was 0.739 (95% CI: 0.719-0.762), and it was 0.703 for the validation cohort (95% CI: 0.657-0.749). The P-values for the Hosmer-Lemeshow test were 0.633 and 0.144 for the training and validation cohorts, respectively, indicating a notable calibration curve fit. The DCA curve indicated that the nomogram could be applied clinically if the risk threshold was between 12% and 84%, which was found to be between 8% and 82% in the validation cohort. CONCLUSION This study highlighted the pressing need for early detection of PPCs in elderly patients undergoing thoracic surgery. The nomogram exhibited promising predictive efficacy for PPCs in elderly patients undergoing thoracic surgery, enabling the identification of high-risk patients and consequently aiding in the implementation of preventive interventions.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100027, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dinghao Xue
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanxiang Li
- Department of Anesthesiology, The 71st Group Army Hospital of CPLA Army, Xuzhou, 221004, China
| | - Luyu Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guosong Liao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongbin Yang
- Department of Anesthesiology, 947 Hospital of Chinese PLA, Kashi Prefecture, Xinjiang, 844200, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Fiedler-Kalenka MO, Brenner T, Bernhard M, Reuß CJ, Beynon C, Hecker A, Jungk C, Nusshag C, Michalski D, Weigand MA, Dietrich M. [Focus on ventilation, oxygen therapy and weaning 2022-2024 : Summary of selected intensive care studies]. DIE ANAESTHESIOLOGIE 2024; 73:698-711. [PMID: 39210065 DOI: 10.1007/s00101-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Affiliation(s)
- M O Fiedler-Kalenka
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translationales Lungenforschungszentrum Heidelberg (TLRC-H), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| | - T Brenner
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
| | - M Bernhard
- Zentrale Notaufnahme, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Düsseldorf, Deutschland
| | - C J Reuß
- Klinik für Anästhesiologie und operative Intensivmedizin, Klinikum Stuttgart, Stuttgart, Deutschland
| | - C Beynon
- Neurochirurgische Klinik, Universitätsklinikum Mannheim, Mannheim, Deutschland
| | - A Hecker
- Klinik für Allgemein- Viszeral‑, Thorax‑, Transplantations- und Kinderchirurgie, Universitätsklinikum Gießen und Marburg, Standort Gießen, Gießen, Deutschland
| | - C Jungk
- Neurochirurgische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Nusshag
- Klinik für Endokrinologie, Stoffwechsel und klinische Chemie/Sektion Nephrologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - D Michalski
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M A Weigand
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - M Dietrich
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
10
|
Mo J, Wang D, Xiao J, Chen Q, An R, Liu HL. Effects of lung protection ventilation strategies on postoperative pulmonary complications after noncardiac surgery: a network meta-analysis of randomized controlled trials. BMC Anesthesiol 2024; 24:346. [PMID: 39342110 PMCID: PMC11437922 DOI: 10.1186/s12871-024-02737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The purpose of this network meta-analysis was to assess the impact of different protective ventilatory strategies on postoperative pulmonary complications (PPCs). METHODS Several databases were searched for randomized controlled trials (RCTs) that were published before October 2023 in a network meta-analysis. We assessed the effect of different lung-protective ventilation strategies on the incidence of PPCs using Bayesian network meta-analysis. RESULTS We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low tidal volumes (LTVs) combined with iPEEP and recruitment manoeuvres (RM) was associated with significantly lower incidence of PPCs [HTVs: OR = 0.38, 95%CrI (0.19, 0.75), LTVs: OR = 0.33, 95%CrI (0.12, 0.82)], postoperative atelectasis[HTVs: OR = 0.2, 95%CrI (0.08, 0.48), LTVs: OR = 0.47, 95%CrI (0.11, 0.93)], and pneumonia[HTVs: OR = 0.22, 95%CrI (0.09, 0.48), LTVs: OR = 0.27, 95%CrI (0.08,0.89)] than was High tidal volumes (HTVs) or LTVs. LTVs combined with medium-to-high PEEP and RM were associated with significantly lower incidence of postoperative atelectasis, and pneumonia. CONCLUSION LTVs combined with iPEEP and RM decreased the incidence of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. Individual PEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence is moderate. TRIAL REGISTRATION PROSPERO identifier CRD42023399485.
Collapse
Affiliation(s)
- Jun Mo
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Dan Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital-Chongqing, Chongqing, 40030, China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qi Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ran An
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Hong Liang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
11
|
Gu WJ, Cen Y, Zhao FZ, Wang HJ, Yin HY, Zheng XF. Association between driving pressure-guided ventilation and postoperative pulmonary complications in surgical patients: a meta-analysis with trial sequential analysis. Br J Anaesth 2024; 133:647-657. [PMID: 38937217 DOI: 10.1016/j.bja.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Prior studies have reported inconsistent results regarding the association between driving pressure-guided ventilation and postoperative pulmonary complications (PPCs). We aimed to investigate whether driving pressure-guided ventilation is associated with a lower risk of PPCs. METHODS We systematically searched electronic databases for RCTs comparing driving pressure-guided ventilation with conventional protective ventilation in adult surgical patients. The primary outcome was a composite of PPCs. Secondary outcomes were pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS). Meta-analysis and subgroup analysis were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CI). Trial sequential analysis (TSA) was used to assess the conclusiveness of evidence. RESULTS Thirteen RCTs with 3401 subjects were included. Driving pressure-guided ventilation was associated with a lower risk of PPCs (RR 0.70, 95% CI 0.56-0.87, P=0.001), as indicated by TSA. Subgroup analysis (P for interaction=0.04) found that the association was observed in non-cardiothoracic surgery (nine RCTs, 1038 subjects, RR 0.61, 95% CI 0.48-0.77, P< 0.0001), with TSA suggesting sufficient evidence and conclusive result; however, it did not reach significance in cardiothoracic surgery (four RCTs, 2363 subjects, RR 0.86, 95% CI 0.67-1.10, P=0.23), with TSA indicating insufficient evidence and inconclusive result. Similarly, a lower risk of pneumonia was found in non-cardiothoracic surgery but not in cardiothoracic surgery (P for interaction=0.046). No significant differences were found in atelectasis and ARDS between the two ventilation strategies. CONCLUSIONS Driving pressure-guided ventilation was associated with a lower risk of postoperative pulmonary complications in non-cardiothoracic surgery but not in cardiothoracic surgery. SYSTEMATIC REVIEW PROTOCOL INPLASY 202410068.
Collapse
Affiliation(s)
- Wan-Jie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Cen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng-Zhi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hua-Jun Wang
- Department of Bone and Joint Surgery and Sports Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai-Yan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiao-Fei Zheng
- Department of Bone and Joint Surgery and Sports Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Lagier D, Zeng C, Kaczka DW, Zhu M, Grogg K, Gerard SE, Reinhardt JM, Ribeiro GCM, Rashid A, Winkler T, Vidal Melo MF. Mechanical ventilation guided by driving pressure optimizes local pulmonary biomechanics in an ovine model. Sci Transl Med 2024; 16:eado1097. [PMID: 39141699 DOI: 10.1126/scitranslmed.ado1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.
Collapse
Affiliation(s)
- David Lagier
- Experimental Interventional Imaging Laboratory (LIIE), European Center for Research in Medical Imaging (CERIMED), Aix Marseille University, Marseille 13005, France
- Department of Anesthesia and Critical Care, University Hospital La Timone, APHM, Marseille 13005, France
| | - Congli Zeng
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - David W Kaczka
- Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Min Zhu
- Guizhou University South Campus, Guiyang City 550025, China
| | - Kira Grogg
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Gabriel C Motta Ribeiro
- Biomedical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-594, Brazil
| | - Azman Rashid
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marcos F Vidal Melo
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
13
|
Sun TT, Chen KX, Tao Y, Zhang GW, Zeng L, Lin M, Huang J, Hu Y. Effect of flow-optimized pressure control ventilation-volume guaranteed (PCV-VG) on postoperative pulmonary complications: a consort study. J Cardiothorac Surg 2024; 19:425. [PMID: 38978064 PMCID: PMC11229334 DOI: 10.1186/s13019-024-02881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Postoperative pulmonary complications (PPCs) after one-lung ventilation (OLV) significantly impact patient prognosis and quality of life. OBJECTIVE To study the impact of an optimal inspiratory flow rate on PPCs in thoracic surgery patients. METHODS One hundred eight elective thoracic surgery patients were randomly assigned to 2 groups in this consort study (control group: n = 53 with a fixed inspiratory expiratory ratio of 1:2; and experimental group [flow rate optimization group]: n = 55). Measurements of Ppeak, Pplat, PETCO2, lung dynamic compliance (Cdyn), respiratory rate, and oxygen concentration were obtained at the following specific time points: immediately after intubation (T0); immediately after starting OLV (T1); 30 min after OLV (T2); and 10 min after 2-lung ventilation (T4). The PaO2:FiO2 ratio was measured using blood gas analysis 30 min after initiating one-lung breathing (T2) and immediately when OLV ended (T3). The lung ultrasound score (LUS) was assessed following anesthesia and resuscitation (T5). The occurrence of atelectasis was documented immediately after the surgery. PPCs occurrences were noted 3 days after surgery. RESULTS The treatment group had a significantly lower total prevalence of PPCs compared to the control group (3.64% vs. 16.98%; P = 0.022). There were no notable variations in peak airway pressure, airway plateau pressure, dynamic lung compliance, PETCO2, respiratory rate, and oxygen concentration between the two groups during intubation (T0). Dynamic lung compliance and the oxygenation index were significantly increased at T1, T2, and T4 (P < 0.05), whereas the CRP level and number of inflammatory cells decreased dramatically (P < 0.05). CONCLUSION Optimizing inspiratory flow rate and utilizing pressure control ventilation -volume guaranteed (PCV-VG) mode can decrease PPCs and enhance lung dynamic compliance in OLV patients.
Collapse
Affiliation(s)
- Ting Ting Sun
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Ke Xin Chen
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Yong Tao
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Gong Wei Zhang
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Li Zeng
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Min Lin
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Jing Huang
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Yue Hu
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China.
| |
Collapse
|
14
|
Wittenstein J, Scharffenberg M, Fröhlich J, Rothmann C, Ran X, Zhang Y, Chai Y, Yang X, Müller S, Koch T, Huhle R, Gama de Abreu M. Effects of Positive End-expiratory Pressure on Pulmonary Perfusion Distribution and Intrapulmonary Shunt during One-lung Ventilation in Pigs: A Randomized Crossover Study. Anesthesiology 2024; 141:44-55. [PMID: 38625679 DOI: 10.1097/aln.0000000000005014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND During one-lung ventilation (OLV), positive end-expiratory pressure (PEEP) can improve lung aeration but might overdistend lung units and increase intrapulmonary shunt. The authors hypothesized that higher PEEP shifts pulmonary perfusion from the ventilated to the nonventilated lung, resulting in a U-shaped relationship with intrapulmonary shunt during OLV. METHODS In nine anesthetized female pigs, a thoracotomy was performed and intravenous lipopolysaccharide infused to mimic the inflammatory response of thoracic surgery. Animals underwent OLV in supine position with PEEP of 0 cm H2O, 5 cm H2O, titrated to best respiratory system compliance, and 15 cm H2O (PEEP0, PEEP5, PEEPtitr, and PEEP15, respectively, 45 min each, Latin square sequence). Respiratory, hemodynamic, and gas exchange variables were measured. The distributions of perfusion and ventilation were determined by IV fluorescent microspheres and computed tomography, respectively. RESULTS Compared to two-lung ventilation, the driving pressure increased with OLV, irrespective of the PEEP level. During OLV, cardiac output was lower at PEEP15 (5.5 ± 1.5 l/min) than PEEP0 (7.6 ± 3 l/min) and PEEP5 (7.4 ± 2.9 l/min; P = 0.004), while the intrapulmonary shunt was highest at PEEP0 (PEEP0: 48.1% ± 14.4%; PEEP5: 42.4% ± 14.8%; PEEPtitr: 37.8% ± 11.0%; PEEP15: 39.0% ± 10.7%; P = 0.027). The relative perfusion of the ventilated lung did not differ among PEEP levels (PEEP0: 65.0% ± 10.6%; PEEP5: 68.7% ± 8.7%; PEEPtitr: 68.2% ± 10.5%; PEEP15: 58.4% ± 12.8%; P = 0.096), but the centers of relative perfusion and ventilation in the ventilated lung shifted from ventral to dorsal and from cranial to caudal zones with increasing PEEP. CONCLUSIONS In this experimental model of thoracic surgery, higher PEEP during OLV did not shift the perfusion from the ventilated to the nonventilated lung, thus not increasing intrapulmonary shunt. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Jonathan Fröhlich
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Carolin Rothmann
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xi Ran
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany; Department of Intensive Care, Chongqing General Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Yingying Zhang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany; Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yusen Chai
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xiuli Yang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Intensive Care and Resuscitation, Department of Outcomes Research, and Department of Cardiothoracic Anesthesia, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Li P, Gao S, Wang Y, Zhou R, Chen G, Li W, Hao X, Zhu T. Utilising intraoperative respiratory dynamic features for developing and validating an explainable machine learning model for postoperative pulmonary complications. Br J Anaesth 2024; 132:1315-1326. [PMID: 38637267 DOI: 10.1016/j.bja.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Timely detection of modifiable risk factors for postoperative pulmonary complications (PPCs) could inform ventilation strategies that attenuate lung injury. We sought to develop, validate, and internally test machine learning models that use intraoperative respiratory features to predict PPCs. METHODS We analysed perioperative data from a cohort comprising patients aged 65 yr and older at an academic medical centre from 2019 to 2023. Two linear and four nonlinear learning models were developed and compared with the current gold-standard risk assessment tool ARISCAT (Assess Respiratory Risk in Surgical Patients in Catalonia Tool). The Shapley additive explanation of artificial intelligence was utilised to interpret feature importance and interactions. RESULTS Perioperative data were obtained from 10 284 patients who underwent 10 484 operations (mean age [range] 71 [65-98] yr; 42% female). An optimised XGBoost model that used preoperative variables and intraoperative respiratory variables had area under the receiver operating characteristic curves (AUROCs) of 0.878 (0.866-0.891) and 0.881 (0.879-0.883) in the validation and prospective cohorts, respectively. These models outperformed ARISCAT (AUROC: 0.496-0.533). The intraoperative dynamic features of respiratory dynamic system compliance, mechanical power, and driving pressure were identified as key modifiable contributors to PPCs. A simplified model based on XGBoost including 20 variables generated an AUROC of 0.864 (0.852-0.875) in an internal testing cohort. This has been developed into a web-based tool for further external validation (https://aorm.wchscu.cn/). CONCLUSIONS These findings suggest that real-time identification of surgical patients' risk of postoperative pulmonary complications could help personalise intraoperative ventilatory strategies and reduce postoperative pulmonary complications.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuanliang Gao
- College of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yaqiang Wang
- College of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China; Sichuan Key Laboratory of Software Automatic Generation and Intelligent Service, Chengdu, Sichuan, China
| | - RuiHao Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guo Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Yoon S, Nam JS, Blank RS, Ahn HJ, Park M, Kim H, Kim HJ, Choi H, Kang HU, Lee DK, Ahn J. Association of Mechanical Energy and Power with Postoperative Pulmonary Complications in Lung Resection Surgery: A Post Hoc Analysis of Randomized Clinical Trial Data. Anesthesiology 2024; 140:920-934. [PMID: 38109657 DOI: 10.1097/aln.0000000000004879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
BACKGROUND Mechanical power (MP), the rate of mechanical energy (ME) delivery, is a recently introduced unifying ventilator parameter consisting of tidal volume, airway pressures, and respiratory rates, which predicts pulmonary complications in several clinical contexts. However, ME has not been previously studied in the perioperative context, and neither parameter has been studied in the context of thoracic surgery utilizing one-lung ventilation. METHODS The relationships between ME variables and postoperative pulmonary complications were evaluated in this post hoc analysis of data from a multicenter randomized clinical trial of lung resection surgery conducted between 2020 and 2021 (n = 1,170). Time-weighted average MP and ME (the area under the MP time curve) were obtained for individual patients. The primary analysis was the association of time-weighted average MP and ME with pulmonary complications within 7 postoperative days. Multivariable logistic regression was performed to examine the relationships between energy variables and the primary outcome. RESULTS In 1,055 patients analyzed, pulmonary complications occurred in 41% (431 of 1,055). The median (interquartile ranges) ME and time-weighted average MP in patients who developed postoperative pulmonary complications versus those who did not were 1,146 (811 to 1,530) J versus 924 (730 to 1,240) J (P < 0.001), and 6.9 (5.5 to 8.7) J/min versus 6.7 (5.2 to 8.5) J/min (P = 0.091), respectively. ME was independently associated with postoperative pulmonary complications (ORadjusted, 1.44 [95% CI, 1.16 to 1.80]; P = 0.001). However, the association between time-weighted average MP and postoperative pulmonary complications was time-dependent, and time-weighted average MP was significantly associated with postoperative pulmonary complications in cases utilizing longer periods of mechanical ventilation (210 min or greater; ORadjusted, 1.46 [95% CI, 1.11 to 1.93]; P = 0.007). Normalization of ME and time-weighted average MP either to predicted body weight or to respiratory system compliance did not alter these associations. CONCLUSIONS ME and, in cases requiring longer periods of mechanical ventilation, MP were independently associated with postoperative pulmonary complications in thoracic surgery. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Susie Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, University of Seoul National College of Medicine, Seoul, South Korea
| | - Jae-Sik Nam
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Randal S Blank
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia
| | - Hyun Joo Ahn
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - MiHye Park
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Heezoo Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hye Jin Kim
- Department of Anesthesiology and Pain Medicine, and Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Uk Kang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Do-Kyeong Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joonghyun Ahn
- Biomedical Statistics Center, Data Science Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
17
|
Gama de Abreu M, Costa ELV. Mechanical Energy and Power: Time to Incorporate Them into Routine Monitoring of Mechanical Ventilation? Anesthesiology 2024; 140:877-880. [PMID: 38592353 DOI: 10.1097/aln.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Marcelo Gama de Abreu
- Division of Intensive Care and Resuscitation, Outcomes Research Consortium, and Division of Cardiothoracic Anesthesia, Department of Anesthesiology, Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
18
|
Ferrando C, Carramiñana A, Piñeiro P, Mirabella L, Spadaro S, Librero J, Ramasco F, Scaramuzzo G, Cervantes O, Garutti I, Parera A, Argilaga M, Herranz G, Unzueta C, Vives M, Regi K, Costa-Reverte M, Sonsoles Leal M, Nieves-Alonso J, García E, Rodríguez-Pérez A, Fariña R, Cabrera S, Guerra E, Gallego-Ligorit L, Herrero-Izquierdo A, Vallés-Torres J, Ramos S, López-Herrera D, De La Matta M, Gokhan S, Kucur E, Mugarra A, Soro M, García L, Sastre JA, Aguirre P, Salazar CJ, Ramos MC, Morocho DR, Trespalacios R, Ezequiel-Fernández F, Lamanna A, Pia Cantatore L, Laforgia D, Bellas S, López C, Navarro-Ripoll R, Martínez S, Vallverdú J, Jacas A, Yepes-Temiño MJ, Belda FJ, Tusman G, Suárez-Sipmann F, Villar J. Individualised, perioperative open-lung ventilation strategy during one-lung ventilation (iPROVE-OLV): a multicentre, randomised, controlled clinical trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:195-206. [PMID: 38065200 DOI: 10.1016/s2213-2600(23)00346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND It is uncertain whether individualisation of the perioperative open-lung approach (OLA) to ventilation reduces postoperative pulmonary complications in patients undergoing lung resection. We compared a perioperative individualised OLA (iOLA) ventilation strategy with standard lung-protective ventilation in patients undergoing thoracic surgery with one-lung ventilation. METHODS This multicentre, randomised controlled trial enrolled patients scheduled for open or video-assisted thoracic surgery using one-lung ventilation in 25 participating hospitals in Spain, Italy, Turkey, Egypt, and Ecuador. Eligible adult patients (age ≥18 years) were randomly assigned to receive iOLA or standard lung-protective ventilation. Eligible patients (stratified by centre) were randomly assigned online by local principal investigators, with an allocation ratio of 1:1. Treatment with iOLA included an alveolar recruitment manoeuvre to 40 cm H2O of end-inspiratory pressure followed by individualised positive end-expiratory pressure (PEEP) titrated to best respiratory system compliance, and individualised postoperative respiratory support with high-flow oxygen therapy. Participants allocated to standard lung-protective ventilation received combined intraoperative 4 cm H2O of PEEP and postoperative conventional oxygen therapy. The primary outcome was a composite of severe postoperative pulmonary complications within the first 7 postoperative days, including atelectasis requiring bronchoscopy, severe respiratory failure, contralateral pneumothorax, early extubation failure (rescue with continuous positive airway pressure, non-invasive ventilation, invasive mechanical ventilation, or reintubation), acute respiratory distress syndrome, pulmonary infection, bronchopleural fistula, and pleural empyema. Due to trial setting, data obtained in the operating and postoperative rooms for routine monitoring were not blinded. At 24 h, data were acquired by an investigator blinded to group allocation. All analyses were performed on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT03182062, and is complete. FINDINGS Between Sept 11, 2018, and June 14, 2022, we enrolled 1380 patients, of whom 1308 eligible patients (670 [434 male, 233 female, and three with missing data] assigned to iOLA and 638 [395 male, 237 female, and six with missing data] to standard lung-protective ventilation) were included in the final analysis. The proportion of patients with the composite outcome of severe postoperative pulmonary complications within the first 7 postoperative days was lower in the iOLA group compared with the standard lung-protective ventilation group (40 [6%] vs 97 [15%], relative risk 0·39 [95% CI 0·28 to 0·56]), with an absolute risk difference of -9·23 (95% CI -12·55 to -5·92). Recruitment manoeuvre-related adverse events were reported in five patients. INTERPRETATION Among patients subjected to lung resection under one-lung ventilation, iOLA was associated with a reduced risk of severe postoperative pulmonary complications when compared with conventional lung-protective ventilation. FUNDING Instituto de Salud Carlos III and the European Regional Development Funds.
Collapse
Affiliation(s)
- Carlos Ferrando
- Institut D'investigació August Pi I Sunyer, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Albert Carramiñana
- Department of Anesthesiology and Critical Care, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Patricia Piñeiro
- Department of Anesthesiology and Critical Care, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Lucia Mirabella
- Department of Medical and Surgical Sciences, Università Degli Studi di Foggia, Foggia, Italy
| | - Savino Spadaro
- Department of Anesthesiology and Critical Care, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Julián Librero
- UPNA, REDISSEC Red de Investigación en Servicios de Salud, Navarrabiomed, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Fernando Ramasco
- Department of Anesthesiology and Critical Care, Hospital Universitario de La Princesa, Madrid, Spain
| | - Gaetano Scaramuzzo
- Department of Anesthesiology and Critical Care, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Oriol Cervantes
- Department of Anesthesiology and Critical Care, Hospital Universitario Germans Trías i Pujol, Barcelona, Spain
| | - Ignacio Garutti
- Department of Anesthesiology and Critical Care, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Parera
- Department of Anesthesiology and Critical Care, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Argilaga
- Department of Anesthesiology and Critical Care, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Gracia Herranz
- Department of Anesthesiology and Critical Care, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Carmen Unzueta
- Department of Anesthesiology and Critical Care, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Marc Vives
- Department of Anesthesiology and Critical Care, Hospital Universitario Josep Trueta, Girona, Spain
| | - Kevin Regi
- Department of Anesthesiology and Critical Care, Hospital Universitario Josep Trueta, Girona, Spain
| | - Marta Costa-Reverte
- Department of Anesthesiology and Critical Care, Hospital Universitario de Bellvitge, Barcelona, Spain
| | | | - Jesús Nieves-Alonso
- Department of Anesthesiology and Critical Care, Hospital Universitario de La Princesa, Madrid, Spain
| | - Esther García
- Department of Anesthesiology and Critical Care, Hospital Universitario de La Princesa, Madrid, Spain
| | - Aurelio Rodríguez-Pérez
- Department of Anesthesiology and Critical Care, Hospital Universitario de Gran Canaria Dr Negrín, Gran Canarias, Spain
| | - Roberto Fariña
- Department of Anesthesiology and Critical Care, Hospital Universitario de Gran Canaria Dr Negrín, Gran Canarias, Spain
| | - Sergio Cabrera
- Department of Anesthesiology and Critical Care, Hospital Universitario de Gran Canaria Dr Negrín, Gran Canarias, Spain
| | - Elisabeth Guerra
- Department of Anesthesiology and Critical Care, Hospital Universitario de Gran Canaria Dr Negrín, Gran Canarias, Spain
| | - Lucia Gallego-Ligorit
- Department of Anesthesiology and Critical Care, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón IIS Aragón, Zaragoza, Spain
| | - Alba Herrero-Izquierdo
- Department of Anesthesiology and Critical Care, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón IIS Aragón, Zaragoza, Spain
| | - J Vallés-Torres
- Department of Anesthesiology and Critical Care, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón IIS Aragón, Zaragoza, Spain
| | - Silvia Ramos
- Department of Anesthesiology and Critical Care, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Daniel López-Herrera
- Department of Anesthesiology and Critical Care, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manuel De La Matta
- Department of Anesthesiology and Critical Care, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Sertcakacilar Gokhan
- Department of Anesthesiology and Critical Care, Bakirkoy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey; Outcomes Research Consortium, Cleveland, OH, USA
| | - Evrim Kucur
- Department of Anesthesiology and Critical Care, Bakirkoy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ana Mugarra
- Department of Anesthesiology and Critical Care, Hospital Universitario Clínico de Valencia, Valencia, Spain
| | - Marina Soro
- Department of Anesthesiology and Critical Care, Hospital Universitario Clínico de Valencia, Valencia, Spain
| | - Laura García
- Department of Anesthesiology and Critical Care, Hospital Universitario Clínico de Valencia, Valencia, Spain
| | - José Alfonso Sastre
- Department of Anesthesiology and Critical Care, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pilar Aguirre
- Department of Anesthesiology and Critical Care, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Claudia Jimena Salazar
- Department of Anesthesiology and Critical Care, Hospital Universitario Ntra Sra de Candelaria, Santa Cruz de Tenerife, Spain
| | - María Carolina Ramos
- Department of Anesthesiology and Critical Care, Hospital Universitario Ntra Sra de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Ramón Trespalacios
- Department of Anesthesiology and Critical Care, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Félix Ezequiel-Fernández
- Department of Anesthesiology and Critical Care, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Angella Lamanna
- Department of Medical and Surgical Sciences, Università Degli Studi di Foggia, Foggia, Italy
| | - Leonarda Pia Cantatore
- Department of Medical and Surgical Sciences, Università Degli Studi di Foggia, Foggia, Italy
| | - Donato Laforgia
- Department of Medical and Surgical Sciences, Università Degli Studi di Foggia, Foggia, Italy
| | - Soledad Bellas
- Department of Anesthesiology and Critical Care, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos López
- Department of Anesthesiology and Critical Care, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Ricard Navarro-Ripoll
- Department of Anesthesiology and Critical Care, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Samira Martínez
- Department of Anesthesiology and Critical Care, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Jordi Vallverdú
- Department of Anesthesiology and Critical Care, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Adriana Jacas
- Department of Anesthesiology and Critical Care, Hospital Clinic de Barcelona, Barcelona, Spain
| | - María José Yepes-Temiño
- Department of Anesthesiology and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Francisco Javier Belda
- Department of Anesthesiology and Critical Care, Hospital Universitario Clínico de Valencia, Valencia, Spain
| | - Gerardo Tusman
- Department of Anesthesiology, Hospital Privado de Comunidad, Mar de Plata, Buenos Aires, Argentina
| | - Fernando Suárez-Sipmann
- CIBER de Enfermedades Respiratorias CIBERES, Instituto de Salud Carlos III, Madrid, Spain; Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Madrid, Spain; Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute for Medical Science, St Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Buggy PM, Buggy DJ. Individualised perioperative ventilation in one-lung anaesthesia? THE LANCET. RESPIRATORY MEDICINE 2024; 12:182-183. [PMID: 38065198 DOI: 10.1016/s2213-2600(23)00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 03/02/2024]
Affiliation(s)
- Pádraig M Buggy
- Department of Medicine, Mercy University Hospital, Cork, Ireland
| | - Donal J Buggy
- Department of Anaesthesiology & Perioperative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Dublin 7, Ireland; Outcomes Research, Cleveland Clinic, OH, USA.
| |
Collapse
|
20
|
Cohen JB, Smith BB, Teeter EG. Update on guidelines and recommendations for enhanced recovery after thoracic surgery. Curr Opin Anaesthesiol 2024; 37:58-63. [PMID: 38085879 DOI: 10.1097/aco.0000000000001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
PURPOSE OF REVIEW Enhanced recovery after thoracic surgery (ERATS) has continued its growth in popularity over the past few years, and evidence for its utility is catching up to other specialties. This review will present and examine some of that accumulated evidence since guidelines sponsored by the Enhanced Recovery after Surgery (ERAS) Society and the European Society of Thoracic Surgeons (ESTS) were first published in 2019. RECENT FINDINGS The ERAS/ESTS guidelines published in 2019 have not been updated, but new studies have been done and new data has been published regarding some of the individual components of the guidelines as they relate to thoracic and lung resection surgery. While there is still not a consensus on many of these issues, the volume of available evidence is becoming more robust, some of which will be incorporated into this review. SUMMARY The continued accumulation of data and evidence for the benefits of enhanced recovery techniques in thoracic and lung resection surgery will provide the thoracic anesthesiologist with guidance on how to best care for these patients before, during, and after surgery. The data from these studies will also help to elucidate which components of ERAS protocols are the most beneficial, and which components perhaps do not provide as much benefit as previously thought.
Collapse
Affiliation(s)
- Joshua B Cohen
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Bradford B Smith
- Department of Anesthesiology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Emily G Teeter
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Xiao Z, Yang L, Dai M, Lu W, Liu F, Frerichs I, Gao C, Sun X, Zhao Z. Regional ventilation distribution before and after laparoscopic lung parenchymal resection. Physiol Meas 2024; 45:015004. [PMID: 38176102 DOI: 10.1088/1361-6579/ad1b3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Objective.The aim of the present study was to evaluate the influence of one-sided pulmonary nodule and tumour on ventilation distribution pre- and post- partial lung resection.Approach.A total of 40 consecutive patients scheduled for laparoscopic lung parenchymal resection were included. Ventilation distribution was measured with electrical impedance tomography (EIT) in supine and surgery lateral positions 72 h before surgery (T1) and 48 h after extubation (T2). Left lung to global ventilation ratio (Fl), the global inhomogeneity index (GI), standard deviation of regional ventilation delay (RVDSD) and pendelluft amplitude (Apendelluft) were calculated to assess the spatial and temporal ventilation distribution.Main results.After surgery (T2), ventilation at the operated chest sides generally deteriorated compared to T1 as expected. For right-side resection, the differences were significant at both supine and left lateral positions (p< 0.001). The change of RVDSDwas in general more heterogeneous. For left-side resection, RVDSDwas worse at T2 compared to T1 at left lateral position (p= 0.002). The other EIT-based parameters showed no significant differences between the two time points. No significant differences were observed between supine and lateral positions for the same time points respectively.Significance.In the present study, we found that the surgery side influenced the ventilation distribution. When the resection was performed on the right lung, the postoperative ipsilateral ventilation was reduced and the right lung ratio fell significantly. When the resection was on the left lung, the ventilation delay was significantly increased.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, the 986th Air Force Hospital, Xijing hospital, the Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Lin Yang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Meng Dai
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, People's Republic of China
| | - Wenjun Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Germany
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Alfaras-Melainis K, Fernando RJ, Boisen ML, Hoffman PJ, Rosenkrans DJ, Teeter E, Cardi AI, Laney J, Reagan A, Rao VK, Anderson M, Luke CB, Subramani S, Schisler T, Ritchie PJ, Gelzinis TA. The Year in Thoracic Anesthesia: Selected Highlights from 2022. J Cardiothorac Vasc Anesth 2024; 38:29-56. [PMID: 37802689 DOI: 10.1053/j.jvca.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023]
Abstract
This article reviews research highlights in the field of thoracic anesthesia. The highlights of this year included new developments in the preoperative assessment and prehabilitation of patients requiring thoracic surgery, updates on the use of devices for one-lung ventilation (OLV) in adults and children, updates on the anesthetic and postoperative management of these patients, including protective OLV ventilation, the use of opioid-sparing techniques and regional anesthesia, and outcomes using enhanced recovery after surgery, as well as the use of expanding indications for extracorporeal membrane oxygenation, specialized anesthetic techniques for airway surgery, and nonintubated video-assisted thoracic surgery.
Collapse
Affiliation(s)
| | - Rohesh J Fernando
- Cardiothoracic Section, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Michael L Boisen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Paul J Hoffman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Emily Teeter
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Alessandra I Cardi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA
| | - Jeremy Laney
- Department of Anesthesiology, University of Southern California, Los Angeles, CA
| | - Aaron Reagan
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Michael Anderson
- Department of Anesthesiology and Perioperative Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Charles B Luke
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sudhakar Subramani
- Department of Anesthesiology, University of Iowa Hospitals & Clinics, Iowa City, IA
| | - Travis Schisler
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia Canada
| | - Peter J Ritchie
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Theresa A Gelzinis
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
23
|
Piccioni F, Langiano N, Bignami E, Guarnieri M, Proto P, D'Andrea R, Mazzoli CA, Riccardi I, Bacuzzi A, Guzzetti L, Rossi I, Scolletta S, Comi D, Benigni A, Pierconti F, Coccia C, Biscari M, Murzilli A, Umari M, Peratoner C, Serra E, Baldinelli F, Accardo R, Diana F, Fasciolo A, Amodio R, Ball L, Greco M, Pelosi P, Della Rocca G. One-Lung Ventilation and Postoperative Pulmonary Complications After Major Lung Resection Surgery. A Multicenter Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2023; 37:2561-2571. [PMID: 37730455 PMCID: PMC10133024 DOI: 10.1053/j.jvca.2023.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES The effect of one-lung ventilation (OLV) strategy based on low tidal volume (TV), application of positive end-expiratory pressure (PEEP), and alveolar recruitment maneuvers (ARM) to reduce postoperative acute respiratory distress syndrome (ARDS) and pulmonary complications (PPCs) compared with higher TV without PEEP and ARM strategy in adult patients undergoing lobectomy or pneumonectomy has not been well established. DESIGN Multicenter, randomized, single-blind, controlled trial. SETTING Sixteen Italian hospitals. PARTICIPANTS A total of 880 patients undergoing elective major lung resection. INTERVENTIONS Patients were randomized to receive lower tidal volume (LTV group: 4 mL/kg predicted body weight, PEEP of 5 cmH2O, and ARMs) or higher tidal volume (HTL group: 6 mL/kg predicted body weight, no PEEP, and no ARMs). After OLV, until extubation, both groups were ventilated using a tidal volume of 8 mL/kg and a PEEP value of 5 cmH2O. The primary outcome was the incidence of in-hospital ARDS. Secondary outcomes were the in-hospital rate of PPCs, major cardiovascular events, unplanned intensive care unit (ICU) admission, in-hospital mortality, ICU length of stay, and in-hospital length of stay. MEASUREMENTS AND MAIN RESULTS ARDS occurred in 3 of 438 patients (0.7%, 95% CI 0.1-2.0) and in 1 of 442 patients (0.2%, 95% CI 0-1.4) in the LTV and HTV group, respectively (Risk ratio: 3.03 95% CI 0.32-29, p = 0.372). Pulmonary complications occurred in 125 of 438 patients (28.5%, 95% CI 24.5-32.9) and in 136 of 442 patients (30.8%, 95% CI 26.6-35.2) in the LTV and HTV group, respectively (risk ratio: 0.93, 95% CI 0.76-1.14, p = 0.507). The incidence of major complications, in-hospital mortality, and unplanned ICU admission, ICU and in-hospital length of stay were comparable in both groups. CONCLUSIONS In conclusion, among adult patients undergoing elective lung resection, an OLV with lower tidal volume, PEEP 5 cmH2O, and ARMs and a higher tidal volume strategy resulted in low ARDS incidence and comparable postoperative complications, in-hospital length of stay, and mortality.
Collapse
Affiliation(s)
- Federico Piccioni
- Department of Anesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Nicola Langiano
- SOC Anesthesia and Intensive Care Medicine Clinic - Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Guarnieri
- Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Paolo Proto
- Department of Critical and Supportive Therapy, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rocco D'Andrea
- Department of Anesthesia, Intensive Care Medicine and Emergency, IRRCS Policlinico di Sant' Orsola, Bologna Academic Hospital, Bologna, Italy
| | - Carlo A Mazzoli
- Department of Anesthesia, Intensive Care Medicine and Prehospital Emergency, Maggiore Hospital Carlo Alberto Pizzardi, Bologna, Italy
| | - Ilaria Riccardi
- SOC Anesthesia and Intensive Care Medicine Clinic - Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | | | - Luca Guzzetti
- ASST Settelaghi Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Irene Rossi
- Cardio-thoracic and vascular Department, UOC Cardio-thoracic and vascular Anesthesia and ICM, Azienda ospedaliero-universitaria Senese, Siena, Italy
| | - Sabino Scolletta
- Cardio-thoracic and vascular Department, UOC Cardio-thoracic and vascular Anesthesia and ICM, Azienda ospedaliero-universitaria Senese, Siena, Italy
| | - Daniela Comi
- Anesthesia and Intensive Care Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Alberto Benigni
- Anesthesia and Intensive Care Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federico Pierconti
- IRCCS-IFO National Institute of Oncology - Regina Elena, DPT of Oncologic Clinic and Research, UOC Anesthesia and ICM, Rome, Italy
| | - Cecilia Coccia
- IRCCS-IFO National Institute of Oncology - Regina Elena, DPT of Oncologic Clinic and Research, UOC Anesthesia and ICM, Rome, Italy
| | - Matteo Biscari
- Arcispedale Santa Maria Nuova, IRCCS AUSL di Reggio Emilia, Italy
| | - Alice Murzilli
- Arcispedale Santa Maria Nuova, IRCCS AUSL di Reggio Emilia, Italy
| | - Marzia Umari
- SOC Anesthesia and Intensive Care Medicine - Azienda Sanitaria Universitaria Giuliana, Cattinara Hospital, Trieste, Italy
| | - Caterina Peratoner
- SOC Anesthesia and Intensive Care Medicine - Azienda Sanitaria Universitaria Giuliana, Cattinara Hospital, Trieste, Italy
| | - Eugenio Serra
- Anesthesia and Intensive Care Medicine Institute - Azienda Ospedaliera-Università of Padua, Padua, Italy
| | | | - Rosanna Accardo
- Division of Anesthesia, Department of Anesthesia, Endoscopy and Cardiology, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Fernanda Diana
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Brotzu - Ospedale Oncologico Businco, Cagliari, Italy
| | | | - Riccardo Amodio
- Department of Anesthesia, Intensive Care and Pain Medicine, IRCCS Centro di Riferimento Oncologico della Basilicata/OECI Clinical Cancer Center - Rionero in Vulture, Potenza, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Massimiliano Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Anaesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | | |
Collapse
|
24
|
Zhang YY, Zhang YM, Wu SL, Wei M, Deng ZP, Lei XY, Bai YP, Wang XB. Association of mechanical power during one-lung ventilation and post-operative pulmonary complications among patients undergoing lobectomy: a protocol for a prospective cohort study. Updates Surg 2023; 75:2365-2375. [PMID: 37540406 DOI: 10.1007/s13304-023-01595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/27/2023] [Indexed: 08/05/2023]
Abstract
The association of intra-operative mechanical power (MP) with post-operative pulmonary complications (PPCs) has been described before, but it is uncertain whether the potential inherent bias can limit the use of this parameter, particularly in the context of one-lung ventilation. This single-center study aims to investigate the effect of MP during one-lung ventilation (OLV), and the risks of PPCs in patients undergoing thoracoscopic lobectomy. This prospective observational study is being conducted in an academic tertiary hospital in mainland China. Participants diagnosed with lung cancer, and aged 50 to 80 years are eligible. Video-assisted thoracoscopic surgery (VATS) lobectomy is performed for all patients. The primary outcome is the occurrence of PPCs over 5 consecutive days after the surgery, or until discharge from the hospital. Secondary outcomes include the composite conditions of PPCs, in-hospital stay, systematic inflammation tested by blood samples, and changes in aeration compartments in the ventilated lung as assessed by CT scans. We aim to evaluate the association of mean MP and the temporal patterns in the trend of MP during OLV with the occurrence of PPCs. A total of 120 patients will be enrolled in this study. The study protocol has received approval from the Ethics Committee of the affiliated hospital of Southwest Medical University, China (Reference number: KY2022162). The findings will be made available to the funder and researchers via scientific conferences and peer-reviewed publications. This controlled trial was approved by the Ethics Committee of Southwest Medical University(ChiCTR2200062173), and registered in the Chinese Clinical Trial Register website ( http://www.chictr.org.cn/edit.aspx?pid=172533&htm=4 , ChiCTR2200062173). A written consent was obtained from each patient.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China
| | - Yu-Mei Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China
| | - Song-Lin Wu
- Department of Intensive Care Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Min Wei
- Department of Intensive Care Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Zhi-Peng Deng
- Faculty of Computer Science, Technical University of Dresden, Dresden, Germany
| | - Xian-Ying Lei
- Department of Intensive Care Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yi-Ping Bai
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.
| | - Xiao-Bin Wang
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
25
|
Kim YJ, Kim BR, Kim HW, Jung JY, Cho HY, Seo JH, Kim WH, Kim HS, Hwangbo S, Yoon HK. Effect of driving pressure-guided positive end-expiratory pressure on postoperative pulmonary complications in patients undergoing laparoscopic or robotic surgery: a randomised controlled trial. Br J Anaesth 2023; 131:955-965. [PMID: 37679285 DOI: 10.1016/j.bja.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Individualised positive end-expiratory pressure (PEEP) improves respiratory mechanics. However, whether PEEP reduces postoperative pulmonary complications (PPCs) remains unclear. We investigated whether driving pressure-guided PEEP reduces PPCs after laparoscopic/robotic abdominal surgery. METHODS This single-centre, randomised controlled trial enrolled patients at risk for PPCs undergoing laparoscopic or robotic lower abdominal surgery. The individualised group received driving pressure-guided PEEP, whereas the comparator group received 5 cm H2O fixed PEEP during surgery. Both groups received a tidal volume of 8 ml kg-1 ideal body weight. The primary outcome analysed per protocol was a composite of pulmonary complications (defined by pre-specified clinical and radiological criteria) within 7 postoperative days after surgery. RESULTS Some 384 patients (median age: 67 yr [inter-quartile range: 61-73]; 66 [18%] female) were randomised. Mean (standard deviation) PEEP in patients randomised to individualised PEEP (n=178) was 13.6 cm H2O (2.1). Individualised PEEP resulted in lower mean driving pressures (14.7 cm H2O [2.6]), compared with 185 patients randomised to standard PEEP (18.4 cm H2O [3.2]; mean difference: -3.7 cm H2O [95% confidence interval (CI): -4.3 to -3.1 cm H2O]; P<0.001). There was no difference in the incidence of pulmonary complications between individualised (25/178 [14.0%]) vs standard PEEP (36/185 [19.5%]; risk ratio [95% CI], 0.72 [0.45-1.15]; P=0.215). Pulmonary complications as a result of desaturation were less frequent in patients randomised to individualised PEEP (8/178 [4.5%], compared with standard PEEP (30/185 [16.2%], risk ratio [95% CI], 0.28 [0.13-0.59]; P=0.001). CONCLUSIONS Driving pressure-guided PEEP did not decrease the incidence of pulmonary complications within 7 days of laparoscopic or robotic lower abdominal surgery, although uncertainty remains given the lower than anticipated event rate for the primary outcome. CLINICAL TRIAL REGISTRATION KCT0004888 (http://cris.nih.go.kr, registration date: April 6, 2020).
Collapse
Affiliation(s)
- Yoon Jung Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bo Rim Kim
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hee Won Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Yoon Jung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye-Yeon Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeoung-Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Ho Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee-Soo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Kyu Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Suleiman A, Azizi BA, Munoz-Acuna R, Ahrens E, Tartler TM, Wachtendorf LJ, Linhardt FC, Santer P, Chen G, Wilson JL, Gangadharan SP, Schaefer MS. Intensity of one-lung ventilation and postoperative respiratory failure: A hospital registry study. Anaesth Crit Care Pain Med 2023; 42:101250. [PMID: 37236317 DOI: 10.1016/j.accpm.2023.101250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Studies linked a high intensity of mechanical ventilation, measured as high mechanical power (MP) to postoperative respiratory failure (PRF) in the setting of two-lung ventilation. We investigated whether a higher MP during one-lung ventilation (OLV) is associated with PRF. METHODS In this registry-based study, adult patients who underwent general anesthesia with OLV for thoracic surgeries between 2006 and 2020 at a New England tertiary healthcare network were included. The association between MP during OLV and PRF (emergency non-invasive ventilation or reintubation within seven days) was assessed in a cohort weighted through a generalized propensity score conditional on a priori defined preoperative and intraoperative factors. Dominance of components of MP and intensity of OLV versus two-lung ventilation in predicting PRF was investigated. RESULTS Out of 878 included patients, 106 (12.1%) developed PRF. The median (IQR) MP during OLV was 9.8 J/min (7.5-11.8) and 8.3 J/min (6.6-10.2) in patients with and without PRF respectively. A higher MP during OLV was associated with PRF (ORadj 1.22 per 1 J/min increase; 95%CI 1.13-1.31; p < 0.001) and characterized by a U-shaped dose-response curve, with the lowest probability of PRF (7.5%) at 6.4 J/min. Dominance analysis of PRF predictors showed a stronger contribution of driving pressure over respiratory rate and tidal volume, the dynamic over the static component of MP, and MP during OLV over two-lung ventilation (contribution to Pseudo-R2: 0.017, 0.021, and 0.036, respectively). CONCLUSION A higher intensity of OLV, mainly driven by driving pressure, is dose-dependently associated with PRF and might constitute a target for mechanical ventilation.
Collapse
Affiliation(s)
- Aiman Suleiman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Basit A Azizi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ricardo Munoz-Acuna
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim M Tartler
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Felix C Linhardt
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Santer
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guanqing Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jennifer L Wilson
- Division of Thoracic Surgery and Interventional Pulmonology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sidhu P Gangadharan
- Division of Thoracic Surgery and Interventional Pulmonology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| |
Collapse
|
27
|
Li XF, Jiang RJ, Mao WJ, Yu H, Xin J, Yu H. The effect of driving pressure-guided versus conventional mechanical ventilation strategy on pulmonary complications following on-pump cardiac surgery: A randomized clinical trial. J Clin Anesth 2023; 89:111150. [PMID: 37307653 DOI: 10.1016/j.jclinane.2023.111150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
STUDY OBJECTIVE Postoperative pulmonary complications occur frequently and are associated with worse postoperative outcomes in cardiac surgical patients. The advantage of driving pressure-guided ventilation strategy in decreasing pulmonary complications remains to be definitively established. We aimed to investigate the effect of intraoperative driving pressure-guided ventilation strategy compared with conventional lung-protective ventilation on pulmonary complications following on-pump cardiac surgery. DESIGN Prospective, two-arm, randomized controlled trial. SETTING The West China university hospital in Sichuan, China. PATIENTS Adult patients who were scheduled for elective on-pump cardiac surgery were enrolled in the study. INTERVENTIONS Patients undergoing on-pump cardiac surgery were randomized to receive driving pressure-guided ventilation strategy based on positive end-expiratory pressure (PEEP) titration or conventional lung-protective ventilation strategy with fixed 5 cmH2O of PEEP. MEASUREMENTS The primary outcome of pulmonary complications (including acute respiratory distress syndrome, atelectasis, pneumonia, pleural effusion, and pneumothorax) within the first 7 postoperative days were prospectively identified. Secondary outcomes included pulmonary complication severity, ICU length of stay, and in-hospital and 30-day mortality. MAIN RESULTS Between August 2020 and July 2021, we enrolled 694 eligible patients who were included in the final analysis. Postoperative pulmonary complications occurred in 140 (40.3%) patients in the driving pressure group and 142 (40.9%) in the conventional group (relative risk, 0.99; 95% confidence interval, 0.82-1.18; P = 0.877). Intention-to-treat analysis showed no significant difference between study groups regarding the incidence of primary outcome. The driving pressure group had less atelectasis than the conventional group (11.5% vs 17.0%; relative risk, 0.68; 95% confidence interval, 0.47-0.98; P = 0.039). Secondary outcomes did not differ between groups. CONCLUSION Among patients who underwent on-pump cardiac surgery, the use of driving pressure-guided ventilation strategy did not reduce the risk of postoperative pulmonary complications when compared with conventional lung-protective ventilation strategy.
Collapse
Affiliation(s)
- Xue-Fei Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong-Juan Jiang
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu 610041, China
| | - Wen-Jie Mao
- Department of Anesthesiology, Jianyang People's Hospital, Jianyang 641400, China
| | - Hong Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Xin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
El Tahan MR, Samara E, Marczin N, Landoni G, Pasin L. Impact of Lower Tidal Volumes During One-Lung Ventilation: A 2022 Update of the Meta-analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth 2023; 37:1983-1992. [PMID: 37225546 DOI: 10.1053/j.jvca.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES To clarify the influence of lower tidal volume (4-7 mL/kg) compared with higher tidal volume (8-15 mL/kg) during one-lung ventilation (OLV) on gas exchange and postoperative clinical outcome. DESIGN Meta-analysis of randomized trials. SETTING Thoracic surgery. PARTICIPANTS Patients receiving OLV. INTERVENTIONS Lower tidal volume during OLV. MEASUREMENTS AND MAIN RESULTS Primary outcome was PaO2-to-the oxygen fraction (PaO2/FIO2) ratio at the end of the surgery, after the reinstitution of two-lung ventilation. Secondary endpoints included perioperative changes in PaO2/FIO2 ratio and carbon dioxide (PaCO2) tension, airway pressure, the incidence of postoperative pulmonary complications, arrhythmia, and length of hospital stay. Seventeen randomized controlled trials (1,463 patients) were selected. Overall analysis showed that the use of low tidal volume during OLV was associated with a significantly higher PaO2/FIO2 ratio 15 minutes after the start of OLV and at the end of surgery (mean difference 33.7 mmHg [p = 0.02] and mean difference 18.59 mmHg [p < 0.001], respectively). The low tidal volume also was associated with higher PaCO2 values 15 minutes and 60 minutes after the start of OLV and with lower airway pressure, which was maintained during two-lung ventilation after surgery. Moreover, the application of lower tidal volume was associated with fewer postoperative pulmonary complications (odds ratio 0.50; p < 0.001) and arrhythmias (odds ratio 0.58; p = 0.009), with no difference in length of hospital stay. CONCLUSIONS The use of lower tidal volume, a component of protective OLV, increases the PaO2/FIO2 ratio, reduces the incidence of postoperative pulmonary complications, and should be considered strongly in daily practice.
Collapse
Affiliation(s)
- Mohamed R El Tahan
- Anesthesiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Al Khubar, Dammam, Saudi Arabia
| | - Evangelia Samara
- Department of Anesthesiology and Postoperative Intensive Care, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nandor Marczin
- The Royal Brompton and Harefield NHS Foundation Trust, London, UK; Section of Anesthesia, Pain Medicine, and Intensive Care, Imperial College London, London, UK; Semmelweis University, Budapest, Hungary
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Laura Pasin
- Department of Anesthesia and Intensive Care, Azienda Ospedale-Università di Padova, Padua, Italy.
| |
Collapse
|
29
|
An MZ, Xu CY, Hou YR, Li ZP, Gao TS, Zhou QH. Effect of intravenous vs. inhaled penehyclidine on respiratory mechanics in patients during one-lung ventilation for thoracoscopic surgery: a prospective, double-blind, randomised controlled trial. BMC Pulm Med 2023; 23:353. [PMID: 37726724 PMCID: PMC10508004 DOI: 10.1186/s12890-023-02653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Minimising postoperative pulmonary complications (PPCs) after thoracic surgery is of utmost importance. A major factor contributing to PPCs is the driving pressure, which is determined by the ratio of tidal volume to lung compliance. Inhalation and intravenous administration of penehyclidine can improve lung compliance during intraoperative mechanical ventilation. Therefore, our study aimed to compare the efficacy of inhaled vs. intravenous penehyclidine during one-lung ventilation (OLV) in mitigating driving pressure and mechanical power among patients undergoing thoracic surgery. METHODS A double-blind, prospective, randomised study involving 176 patients scheduled for elective thoracic surgery was conducted. These patients were randomly divided into two groups, namely the penehyclidine inhalation group and the intravenous group before their surgery. Driving pressure was assessed at T1 (5 min after OLV), T2 (15 min after OLV), T3 (30 min after OLV), and T4 (45 min after OLV) in both groups. The primary outcome of this study was the composite measure of driving pressure during OLV. The area under the curve (AUC) of driving pressure from T1 to T4 was computed. Additionally, the secondary outcomes included mechanical power, lung compliance and the incidence of PPCs. RESULTS All 167 participants, 83 from the intravenous group and 84 from the inhalation group, completed the trial. The AUC of driving pressure for the intravenous group was 39.50 ± 9.42, while the inhalation group showed a value of 41.50 ± 8.03 (P = 0.138). The incidence of PPCs within 7 days after surgery was 27.7% in the intravenous group and 23.8% in the inhalation group (P = 0.564). No significant differences were observed in any of the other secondary outcomes between the two groups (all P > 0.05). CONCLUSIONS Our study found that among patients undergoing thoracoscopic surgery, no significant differences were observed in the driving pressure and mechanical power during OLV between those who received an intravenous injection of penehyclidine and those who inhaled it. Moreover, no significant difference was observed in the incidence of PPCs between the two groups.
Collapse
Affiliation(s)
- Ming-Zi An
- Anesthesia Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Department of anaesthesiology, Jiaxing Chinese Medical Hospital, No. 1501, Zhongshan East Road, Jiaxing, Zhejiang Province, China
| | - Cheng-Yun Xu
- Anesthesia Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Department of anaesthesiology and pain medicine, affiliated hospital of Jiaxing University, No.1882, South Central Road, Jiaxing, Zhejiang Province, China
| | - Yue-Ru Hou
- Anesthesia Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Department of anaesthesiology and pain medicine, affiliated hospital of Jiaxing University, No.1882, South Central Road, Jiaxing, Zhejiang Province, China
| | - Zhen-Ping Li
- Department of anaesthesiology and pain medicine, affiliated hospital of Jiaxing University, No.1882, South Central Road, Jiaxing, Zhejiang Province, China
| | - Te-Sheng Gao
- Department of anaesthesiology, Jiaxing Chinese Medical Hospital, No. 1501, Zhongshan East Road, Jiaxing, Zhejiang Province, China.
| | - Qing-He Zhou
- Department of anaesthesiology and pain medicine, affiliated hospital of Jiaxing University, No.1882, South Central Road, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
30
|
Oh EJ, Kim J, Kim BG, Han S, Ko JS, Gwak MS, Kim GS, Choi EA, Kang J, Park HY. Intraoperative Factors Modifying the Risk of Postoperative Pulmonary Complications After Living Donor Liver Transplantation. Transplantation 2023; 107:1748-1755. [PMID: 36959123 DOI: 10.1097/tp.0000000000004544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
BACKGROUND The relationship between intraoperative anesthetic management and postoperative pulmonary complications (PPCs) after liver transplantation is not fully understood. We aimed to determine the intraoperative contributors to PPC. METHODS The retrospectively collected cohort included 605 patients who underwent living donor liver transplantation. PPCs comprised respiratory failure, respiratory infection, pulmonary edema, atelectasis (at least moderate degree), pneumothorax, and pleural effusion (at least moderate degree). The presence and type of PPC were evaluated by 2 pulmonary physicians. Logistic regression analysis was performed to determine the association between perioperative variables and PPC risk. RESULTS Of the 605 patients, 318 patients (52.6%) developed 486 PPCs. Multivariable analysis demonstrated that PPC risk decreased with low tidal volume ventilation (odds ratio [OR] 0.62 [0.41-0.94], P = 0.023) and increased with greater driving pressure at the end of surgery (OR 1.08 [1.01-1.14], P = 0.018), prolonged hypotension (OR 1.85 [1.27-2.70], P = 0.001), and blood albumin level ≤3.0 g/dL at the end of surgery (OR 2.43 [1.51-3.92], P < 0.001). Survival probability at 3, 6, and 12 mo after transplantation was 91.2%, 89.6%, and 86.5%, respectively, in patients with PPCs and 98.3%, 96.5%, and 93.4%, respectively, in patients without PPCs (hazard ratio 2.2 [1.3-3.6], P = 0.004). Graft survival probability at 3, 6, and 12 mo after transplantation was 89.3%, 87.1%, and 84.3%, respectively, in patients with PPCs and 97.6%, 95.8%, and 92.7%, respectively, in patients without PPCs (hazard ratio 2.3 [1.4-3.7], P = 0.001). CONCLUSIONS We found that tidal volume, driving pressure, hypotension, and albumin level during living donor liver transplantation were significantly associated with PPC risk. These data may help determine patients at risk of PPC or develop an intraoperative lung-protective strategy for liver transplant recipients.
Collapse
Affiliation(s)
- Eun Jung Oh
- Department of Anesthesiology and Pain Medicine, Gwangmyeong Hospital, Chung-Ang University School of Medicine, Gwangmyeong, Korea
| | - Jeayoun Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bo-Guen Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Justin S Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi Sook Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ah Choi
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeon Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Zorrilla-Vaca A, Grant MC, Rehman M, Sarin P, Mendez-Pino L, Urman RD, Varelmann D. Performance Comparison of Pulmonary Risk Scoring Systems in Lung Resection. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00343-9. [PMID: 37330329 DOI: 10.1053/j.jvca.2023.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To validate and compare the performance of different pulmonary risk scoring systems to predict postoperative pulmonary complications (PPCs) in lung resection surgery. DESIGN Retrospective cohort study SETTING: A historic single-center cohort of lung resection surgeries PARTICIPANTS: Adult patients undergoing lung resection surgery under 1-lung ventilation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The accuracy of the following pulmonary risk scoring systems were used to predict pulmonary complications: the ARISCAT (Assess respiratory RIsk in Surgical patients in CATalonia), the LAS VEGAS (Local Assessment of VEntilatory management during General Anesthesia for Surgery), the SPORC (Score for Prediction of Postoperative Respiratory Complications), and a recent thoracic-specific risk score, named CARDOT. Discrimination and calibration were assessed using the concordance (c) index and the intercept of LOESS (locally estimated scatterplot)-smoothed curves, respectively. Additional models were constructed that incorporated predicted postoperative forced expiratory volume (ppoFEV1) into each scoring system. Of the 2,104 patients undergoing lung surgery, 123 developed postoperative pulmonary complications (PPCs; 5.9%). All scoring systems had poor discriminatory power to predict PPCs (ARISCAT c-index 0.60, 95% confidence interval [CI] 0.55-0.65; LAS VEGAS c-index 0.68, 95% CI 0.63-0.73; SPORC c-index 0.63, 95% CI 0.59-0.68; CARDOT c-index 0.64, 95% CI 0.58-0.70), but the inclusion of ppoFEV1 slightly improved the performance of LAS VEGAS (c-index 0.70, 95% CI 0.66-0.75) and CARDOT (c-index 0.68, 95% CI 0.62-0.73). Analysis of calibration showed a slight overestimation when using ARISCAT (intercept -0.28) and LAS VEGAS (intercept -0.27). CONCLUSIONS None of the scoring systems appeared to have adequate discriminatory power to predict PPCs among patients undergoing lung resection. An alternative risk score is necessary to better predict patients at risk of PPCs after thoracic surgery.
Collapse
Affiliation(s)
- Andres Zorrilla-Vaca
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Anesthesiology, Universidad del Valle, Hospital Universidad del Valle, Cali, Colombia.
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD
| | - Muhammad Rehman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Pankaj Sarin
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Laura Mendez-Pino
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Richard D Urman
- Department of Anesthesiology, The Ohio State University and Wexner Medical Center, Columbus, OH
| | - Dirk Varelmann
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Thoracic anaesthetic research: 90 years of sustained progress. Br J Anaesth 2023; 130:e30-e33. [PMID: 36470744 DOI: 10.1016/j.bja.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
Over the 90 years since the first description of one-lung ventilation, the practice of thoracic surgery and anaesthesia continues to develop. Minimally invasive surgical techniques are increasingly being used to minimise the surgical insult and facilitate improved outcomes. Challenging these outcomes, however, are parallel changes in patient characteristics with more older and sicker patients undergoing surgery. Thoracic anaesthesia as a speciality continues to respond to these challenges with evolution of practice and strong academic performance.
Collapse
|
33
|
Shelley B, Marczin N. Do we have the 'power' to 'drive' down the incidence of pulmonary complications after thoracic surgery. Br J Anaesth 2023; 130:e37-e40. [PMID: 36586730 DOI: 10.1016/j.bja.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 01/06/2023] Open
Abstract
The concept, mechanisms, and physical and physiological determinants of ventilator-induced lung injury, as well as the influence of lung-protective ventilation strategies, are novel paradigms of modern intensive care and perioperative medicine. Driving pressure and mechanical power have emerged as meaningful and modifiable targets with specific relevance to thoracic anaesthesia and one-lung ventilation. The relationship between these factors and postoperative pulmonary complications remains complex because of the methodological design and outcome selection. Larger observational studies are required to better understand the characteristics of driving pressure and power in current practice of thoracic anaesthesia in order to design future trials in high-risk thoracic populations at risk of acute lung injury.
Collapse
Affiliation(s)
- Ben Shelley
- Department of Cardiothoracic Anaesthesia and Intensive Care, Golden Jubilee National Hospital, Glasgow, UK; Anaesthesia, Perioperative Medicine and Critical Care Research Group, University of Glasgow, Glasgow, UK.
| | - Nandor Marczin
- Division of Anaesthesia Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Anaesthesia and Critical Care, Harefield Hospital, Royal Brompton & Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK; Department of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Yueyi J, Jing T, Lianbing G. A structured narrative review of clinical and experimental studies of the use of different positive end-expiratory pressure levels during thoracic surgery. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:717-731. [PMID: 36181340 PMCID: PMC9629996 DOI: 10.1111/crj.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aimed to present a review on the general effects of different positive end-expiratory pressure (PEEP) levels during thoracic surgery by qualitatively categorizing the effects into detrimental, beneficial, and inconclusive. DATA SOURCE Literature search of Pubmed, CNKI, and Wanfang was made to find relative articles about PEEP levels during thoracic surgery. We used the following keywords as one-lung ventilation, PEEP, and thoracic surgery. RESULTS We divide the non-individualized PEEP value into five grades, that is, less than 5, 5, 5-10, 10, and more than 10 cmH2 O, among which 5 cmH2 O is the most commonly used in clinic at present to maintain alveolar dilatation and reduce the shunt fraction and the occurrence of atelectasis, whereas individualized PEEP, adjusted by test titration or imaging method to adapt to patients' personal characteristics, can effectively ameliorate intraoperative oxygenation and obtain optimal pulmonary compliance and better indexes relating to respiratory mechanics. CONCLUSIONS Available data suggest that PEEP might play an important role in one-lung ventilation, the understanding of which will help in exploring a simple and economical method to set the appropriate PEEP level.
Collapse
Affiliation(s)
- Jiang Yueyi
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Tan Jing
- Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| | - Gu Lianbing
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina,Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| |
Collapse
|