1
|
Ille A, Nilsson C, Sjödin C, Daham S, Persson P, Svensson CJ. Airway pressure release ventilation (APRV) versus pressure support ventilation (PSV)-A prospective intervention trial comparing haemodynamic parameters in intensive care patients. Acta Anaesthesiol Scand 2024; 68:932-939. [PMID: 38764089 DOI: 10.1111/aas.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND AND AIM Assisted mechanical ventilation may alter the pressure profile in the thorax compared to normal breathing, which can affect the blood flow to and from the heart. Studies suggest that in patients with severe lung disease, airway pressure release ventilation (APRV) may be haemodynamically beneficial compared to other ventilator settings. The primary aim of this study was to investigate if APRV affects cardiac index in intubated intensive care patients without severe lung disease when compared to pressure support ventilation (PSV). The secondary aim comprised potential changes in other haemodynamic and ventilatory parameters. METHODS Twenty patients were enrolled in the intensive care unit (ICU) at Sahlgrenska University Hospital. Eligible patients met the inclusion criteria; 18 years of age or above, intubated and mechanically ventilated, triggering and stable on PSV mode, with indwelling haemodynamic monitoring via a pulse-induced continuous cardiac output (PiCCO) catheter. The study protocol started with a 30-min interval on PSV mode, followed by a 30-min interval on APRV mode, and finally a 30-min interval back on PSV mode. At the end of each interval, PiCCO outputs, ventilator outputs, arterial and venous blood gas analyses, heart rate and central venous pressure were recorded and compared between modes. RESULTS There was no significant difference in cardiac index (3.42 vs. 3.39 L/min/m2) between PSV and APRV, but a significant increase in central venous pressure (+1.0 mmHg, p = .027). Furthermore, we found a significant reduction in peak airway pressure (-3.16 cmH2O, p < .01) and an increase in mean airway pressure (+2.1 cmH2O, p < .01). No statistically significant change was found in oxygenation index (partial pressure of O2 [pO2]/fraction of inspired oxygen) nor in other secondary outcomes when comparing PSV and APRV. There was no significant association between global end-diastolic volume index and cardiac index (R2 = 0.0089) or central venous pressure (R2 = 0.278). All parameters returned to baseline after switching the ventilator mode back to PSV. CONCLUSION We could not detect any changes in cardiac index in ICU patients without severe lung disease during APRV compared to PSV mode, despite lower peak airway pressure and increased mean airway pressure.
Collapse
Affiliation(s)
- Alexandru Ille
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carl Nilsson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carl Sjödin
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shanay Daham
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Per Persson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Johan Svensson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Aldhahir AM, Alqarni AA, Madkhali MA, Madkhali HH, Bakri AA, Shawany MA, Alasimi AH, Alsulayyim AS, Alqahtani JS, Alyami MM, Alghamdi SM, Alqarni OA, Hakamy A. Awareness and practice of airway pressure release ventilation mode in acute respiratory distress syndrome patients among nurses in Saudi Arabia. BMC Nurs 2024; 23:79. [PMID: 38291421 PMCID: PMC10826023 DOI: 10.1186/s12912-024-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND This study aimed to assess the knowledge and current practice of using the airway pressure release ventilation (APRV) mode with acute respiratory distress syndrome (ARDS) patients and identify barriers to not using this mode of ventilation among nurses who work in critical areas in Saudi Arabia. METHODS Between December 2022 and April 2023, a cross-sectional online survey was disseminated to nurses working in critical care areas in Saudi Arabia. The characteristics of the respondents were analyzed using descriptive statistics. Percentages and frequencies were used to report categorical variables. RESULTS Overall, 1,002 nurses responded to the online survey, of whom 592 (59.1%) were female. Only 248 (24.7%) nurses had ever used APRV mode, whereas only 229 (22.8%) received training on APRV mode. Moreover, 602 (60.0%) nurses did not know whether APRV was utilized in their hospital. Additionally, 658 (65.6%) nurses did not know whether APRV mode was managed using a standard protocol. Prone positioning was the highest recommended intervention by 444 (43.8%) when a conventional MV failed to improve oxygenation in patients with ARDS. 323 (32.2%) respondents stated that the P-high should be set equal to the plateau pressure on a conventional ventilator, while 400 (39.9%) said that the P-low should match PEEP from a conventional ventilator. Almost half of the respondents (446, 44.5%) stated that the T-high should be set between 4 and 6 s, while 415 (41.4%) said that the T-low should be set at 0.4 to 0.8 s. Over half of the nurses (540, 53.9%) thought that the maximum allowed tidal volume during the release phase should be 4-6 ml/kg. Moreover, 475 (47.4%) believed that the maximum allowed P-high setting should be 35 cm H2O. One-third of the responders (329, 32.8%) stated that when weaning patients with ARDS while in APRV mode, the P-high should be reduced gradually to reach a target of 10 cm H2O. However, 444 (44.3%) thought that the T-high should be gradually increased to reach a target of 10 s. Half of the responders (556, 55.5%) felt that the criteria to switch the patient to continuous positive airway pressure (CPAP) were for the patient to have an FiO2 ≤ 0.4, P-high ≤ 10 cm H2O, and T-high ≥ 10 s. Lack of training was the most common barrier to not using APRV by 615 (61.4%). CONCLUSION The majority of nurses who work in critical care units have not received sufficient training in APRV mode. A significant discrepancy was observed regarding the clinical application and management of APRV parameters. Inadequate training was the most frequently reported barrier to the use of APRV in patients with ARDS.
Collapse
Affiliation(s)
- Abdulelah M Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed A Madkhali
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hussain H Madkhali
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Bakri
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohammad A Shawany
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahmed H Alasimi
- Department of Respiratory Therapy, Georgia State University, Atlanta, GA, USA
| | - Abdullah S Alsulayyim
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Jaber S Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Mohammed M Alyami
- Respiratory Therapy Department, Batterjee Medical College, Khamis Mushait, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omar A Alqarni
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Naendrup JH, Steinke J, Garcia Borrega J, Stoll SE, Michelsen PO, Assion Y, Shimabukuro-Vornhagen A, Eichenauer DA, Kochanek M, Böll B. Airway Pressure Release Ventilation in COVID-19-Associated Acute Respiratory Distress Syndrome-A Multicenter Propensity Score-Matched Analysis. J Intensive Care Med 2024; 39:84-93. [PMID: 37861125 DOI: 10.1177/08850666231207303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: There are limited and partially contradictory data on the effects of airway pressure release ventilation (APRV) in COVID-19-associated acute respiratory distress syndrome (CARDS). Therefore, we analyzed the clinical outcome, complications, and longitudinal course of ventilation parameters and laboratory values in patients with CARDS, who were mechanically ventilated using APRV. Methods: Respective data from 4 intensive care units (ICUs) were collected and compared to a matched cohort of patients receiving conventional low tidal volume ventilation (LTV). Propensity score matching was performed based on age, sex, blood gas analysis, and APACHE II score at admission, as well as the implementation of prone positioning. Findings: Forty patients with CARDS, who were mechanically ventilated using APRV, and 40 patients receiving LTV were matched. No significant differences were detected for tidal volumes per predicted body weight, peak pressure values, and blood gas analyses on admission, 6 h post admission as well as on day 3 and day 7. Regarding ICU survival, no significant difference was identified between APRV patients (40%) and LTV patients (42%). Median duration of mechanical ventilation and duration of ICU treatment were comparable in both groups. Similar complication rates with respect to ventilator-associated pneumonia, septic shock, thromboembolic events, barotrauma, as well as the necessity for hemodialysis were detected for both groups. Clinical characteristics that were associated with increased mortality in a Cox proportional hazards regression analysis included age (hazard ratio [HR] 1.08, 95% confidence interval [CI] 1.04-1.1; P < .001), severe acute respiratory distress syndrome (HR 2.62, 95% CI 1.02-6.7; P = .046) and the occurrence of septic shock (HR 17.18, 95% CI 2.06-143.2; P = .009), but not the ventilation mode. Interpretation: Intensive care unit survival, duration of mechanical ventilation, and ICU treatment as well as ventilation-associated complication rates were equivalent using APRV compared to conventional LTV in patients with CARDS.
Collapse
Affiliation(s)
- Jan-Hendrik Naendrup
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Jonathan Steinke
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Jorge Garcia Borrega
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Sandra Emily Stoll
- Faculty of Medicine and University Hospital Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany
| | - Per Ole Michelsen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, St. Vinzenz Hospital Cologne, Cologne, Germany
| | - Yannick Assion
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Porz am Rhein Hospital Cologne, Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Dennis Alexander Eichenauer
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Matthias Kochanek
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| | - Boris Böll
- Faculty of Medicine and University Hospital Cologne, First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf (CIO), Cologne, Germany
| |
Collapse
|
4
|
Jackson A, Neyroud F, Barnsley J, Hunter E, Beecham R, Radharetnas M, Grocott MPW, Dushianthan A. Prone Positioning in Mechanically Ventilated COVID-19 Patients: Timing of Initiation and Outcomes. J Clin Med 2023; 12:4226. [PMID: 37445260 DOI: 10.3390/jcm12134226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The COVID-19 pandemic led to a broad implementation of proning to enhance oxygenation in both self-ventilating and mechanically ventilated critically ill patients with acute severe hypoxic respiratory failure. However, there is little data on the impact of the timing of the initiation of prone positioning in COVID-19 patients receiving mechanical ventilation. In this study, we analyzed our proning practices in mechanically ventilated COVID-19 patients. There were 931 total proning episodes in 144 patients, with a median duration of 16 h (IQR 15-17 h) per proning cycle. 563 proning cycles were initiated within 7 days of intubation (early), 235 within 7-14 days (intermediate), and 133 after 14 days (late). The mean change in oxygenation defined as the delta PaO2/FiO2 ratio (ΔPF) after the prone episode was 16.6 ± 34.4 mmHg (p < 0.001). For early, intermediate, and late cycles, mean ΔPF ratios were 18.5 ± 36.7 mmHg, 13.2 ± 30.4 mmHg, and 14.8 ± 30.5 mmHg, with no significant difference in response between early, intermediate, and late proning (p = 0.2), respectively. Our findings indicate a favorable oxygenation response to proning episodes at all time points, even after >14 days of intubation. However, the findings cannot be translated directly into a survival advantage, and more research is needed in this area.
Collapse
Affiliation(s)
- Alexander Jackson
- NIHR Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton SO16 6YD, UK
| | - Florence Neyroud
- General Intensive Care Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Josephine Barnsley
- General Intensive Care Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Elsie Hunter
- General Intensive Care Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ryan Beecham
- General Intensive Care Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Meiarasu Radharetnas
- General Intensive Care Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Michael P W Grocott
- NIHR Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Bittner E, Sheridan R. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am 2023; 103:439-451. [PMID: 37149380 PMCID: PMC10028407 DOI: 10.1016/j.suc.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respiratory failure occurs with some frequency in seriously burned patients, driven by a combination of inflammatory and infection factors. Inhalation injury contributes to respiratory failure in some burn patients via direct mucosal injury and indirect inflammation. In burn patients, respiratory failure leading to acute respiratory distress syndrome, with or without inhalation injury, is effectively managed using principles evolved for non-burn critically ill patients.
Collapse
Affiliation(s)
- Edward Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA; Department of Anesthesia, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert Sheridan
- Department of Surgery, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Bajon F, Gauthier V. Management of refractory hypoxemia using recruitment maneuvers and rescue therapies: A comprehensive review. Front Vet Sci 2023; 10:1157026. [PMID: 37065238 PMCID: PMC10098094 DOI: 10.3389/fvets.2023.1157026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Refractory hypoxemia in patients with acute respiratory distress syndrome treated with mechanical ventilation is one of the most challenging conditions in human and veterinary intensive care units. When a conventional lung protective approach fails to restore adequate oxygenation to the patient, the use of recruitment maneuvers and positive end-expiratory pressure to maximize alveolar recruitment, improve gas exchange and respiratory mechanics, while reducing the risk of ventilator-induced lung injury has been suggested in people as the open lung approach. Although the proposed physiological rationale of opening and keeping open previously collapsed or obstructed airways is sound, the technique for doing so, as well as the potential benefits regarding patient outcome are highly controversial in light of recent randomized controlled trials. Moreover, a variety of alternative therapies that provide even less robust evidence have been investigated, including prone positioning, neuromuscular blockade, inhaled pulmonary vasodilators, extracorporeal membrane oxygenation, and unconventional ventilatory modes such as airway pressure release ventilation. With the exception of prone positioning, these modalities are limited by their own balance of risks and benefits, which can be significantly influenced by the practitioner's experience. This review explores the rationale, evidence, advantages and disadvantages of each of these therapies as well as available methods to identify suitable candidates for recruitment maneuvers, with a summary on their application in veterinary medicine. Undoubtedly, the heterogeneous and evolving nature of acute respiratory distress syndrome and individual lung phenotypes call for a personalized approach using new non-invasive bedside assessment tools, such as electrical impedance tomography, lung ultrasound, and the recruitment-to-inflation ratio to assess lung recruitability. Data available in human medicine provide valuable insights that could, and should, be used to improve the management of veterinary patients with severe respiratory failure with respect to their intrinsic anatomy and physiology.
Collapse
|
7
|
Sinatra J, Salim RW, Tanoto EA, Hariyanto H. Early use of airway pressure release ventilation in acute respiratory distress syndrome induced by coronavirus disease 2019: a case report. J Med Case Rep 2022; 16:486. [PMID: 36575498 PMCID: PMC9793350 DOI: 10.1186/s13256-022-03658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/27/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 is a highly transmissible and pathogenic viral infection caused by severe acute respiratory syndrome coronavirus 2, a novel coronavirus that was identified in early January 2020 in Wuhan, China, and has become a pandemic disease worldwide. The symptoms of coronavirus disease 2019 range from asymptomatic to severe respiratory failure. In moderate and severe cases, oxygen therapy is needed. In severe cases, high-flow nasal cannula, noninvasive ventilation, and invasive mechanical ventilation are needed. Many ventilation methods in mechanical ventilation can be used, but not all are suitable for coronavirus disease 2019 patients. Airway pressure release ventilation, which is one of the mechanical ventilation methods, can be considered for patients with moderate-to-severe acute respiratory distress syndrome. It was found that oxygenation in the airway pressure release ventilation method was better than in the conventional method. How about airway pressure release ventilation in coronavirus disease 2019 patients? We report a case of confirmed coronavirus disease 2019 in which airway pressure release ventilation mode was used. CASE PRESENTATION In this case study, we report a 74-year-old Chinese with a history of hypertension and uncontrolled diabetes mellitus type 2. He came to our hospital with the chief complaint of difficulty in breathing. He was fully awake with an oxygen saturation of 82% on room air. The patient was admitted and diagnosed with severe coronavirus disease 2019, and he was given a nonrebreathing mask at 15 L per minute, and oxygen saturation went back to 95%. After a few hours with a nonrebreathing mask, his condition worsened. On the third day after admission, saturation went down despite using noninvasive ventilation. We decided to intubate the patient and used airway pressure release ventilation mode. Finally, after 14 days of being intubated, the patient could be extubated and discharged after 45 days of hospitalization. CONCLUSION Early use of airway pressure release ventilation may be considered as one of the ventilation strategies to treat severe coronavirus disease 2019 acute respiratory distress syndrome. Although reports on airway pressure release ventilation and protocols on its initiation and titration methods are limited, it may be worthwhile to consider, given its known ability to maximize alveolar recruitment, preserve alveolar epithelial integrity, and surfactant, all of which are crucial for handling the "fragile" lungs of coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Jadeny Sinatra
- grid.443840.f0000 0004 0386 5421Department of Anesthesiology, Faculty of Medicine, Universitas Methodist Indonesia, Medan, Sumatera Utara Indonesia ,Anesthesiology Department, Siloam Dhirga Surya Hospital, Medan, Sumatera Utara Indonesia
| | - Ronnie Wirawan Salim
- Emergency Department, Siloam Dhirga Surya Hospital, Medan, Sumatera Utara Indonesia
| | - Epifanus Arie Tanoto
- Emergency Department, Siloam Dhirga Surya Hospital, Medan, Sumatera Utara Indonesia
| | - Hori Hariyanto
- Anesthesiology Department and Critical Care Medicine, Siloam Hospital Lippo Village, Tangerang, Banten, Indonesia
| |
Collapse
|
8
|
The optimal management of the patient with COVID‐19 pneumonia: HFNC, NIV/CPAP or mechanical ventilation? Afr J Thorac Crit Care Med 2022; 28. [DOI: 10.7196/ajtccm.2022.v28i3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
The recent pandemic has seen unprecedented demand for respiratory support of patients with COVID‐19 pneumonia, stretching services and clinicians. Yet despite the global numbers of patients treated, guidance is not clear on the correct choice of modality or the timing of escalation of therapy for an individual patient.This narrative review assesses the available literature on the best use of different modalities of respiratory support for an individual patient, and discusses benefits and risks of each, coupled with practical advice to improve outcomes.
On current data, in an ideal context, it appears that as disease severity worsens, conventional oxygen therapy is not sufficient alone. In more severe disease, i.e. PaO2/FiO2 ratios below approximately 200, helmet‐CPAP (continuous positive airway pressure) (although not widely available) may be superior to high‐flow nasal cannula (HFNC) therapy or facemask non‐invasive ventilation (NIV)/CPAP, and that facemask NIV/CPAP may be superior to HFNC, but with noted important complications, including risk of pneumothoraces.
In an ideal context, invasive mechanical ventilation should not be delayed where indicated and available. Vitally, the choice of respiratory support should not be prescriptive but contextualised to each setting, as supply and demand of resources vary markedly between institutions. Over time, institutions should develop clear policies to guide clinicians before demand exceeds supply, and should frequently review best practice as evidence matures.
Collapse
|
9
|
Tollman J, Ahmed Z. Ventilating the blast lung: Exploring ventilation strategies in primary blast lung injury. TRAUMA-ENGLAND 2022. [DOI: 10.1177/14604086221080020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction Primary blast lung injury (PBLI) is the most common and fatal of all primary blast injuries. The majority of those with PBLI will require early intubation and mechanical ventilation, and thus, ventilation strategy forms a crucial part of any management plan. Methods: A comprehensive, but not systematic, PubMed and Google Scholar database search identified articles that contribute to our current understanding of ventilation strategies in PBLI for a narrative educational review. Results A PBLI ventilation strategy must strive to minimise all four of ventilator-associated lung injury (VALI), volutrauma, barotrauma and biotrauma. The three main ventilation strategies available are conventional low tidal volume (LTV) ventilation, airway pressure release ventilation (APRV) and high frequency oscillatory ventilation (HFOV). Conventional LTV ventilation together with a variable positive end-expiratory pressure (PEEP) and permissive hypercapnia has demonstrated reduced inflammation and mortality with a greater number of ventilator-free days. APRV has the potential to reduce dynamic strain, PaO2/FiO2 ratios, levels of applied mechanical power and extravascular lung water while encouraging spontaneous breathing. HFOV is able to effectively avoid VALI while curbing inflammation and histological lung injury, though not necessarily mortality. Conclusions: Presently, PBLI should largely be managed with conventional LTV ventilation alongside a variable PEEP and permissive hypercapnia with APRV and HFOV reserved as rescue strategies for where conventional LTV ventilation fails. Clinicians should additionally consider supplementing their strategy with adjunctive therapies such as prone positioning, inhaled nitric oxide and extracorporeal membrane oxygenation that may further reduce mortality and combat severe respiratory and/or cardiac failure.
Collapse
Affiliation(s)
- Jaden Tollman
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
10
|
Garland A, Hopton P. Airway closure in anaesthesia and intensive care. BJA Educ 2022; 22:126-130. [PMID: 35531076 PMCID: PMC9073299 DOI: 10.1016/j.bjae.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
|
11
|
Tseng H, Wang AL, Lin HT, Lee CC, Chen WC. Entire Bilateral Kidneys Enhanced by Air Contrast after Ventilation-induced Alveolar Rupture. Am J Respir Crit Care Med 2021; 203:e31-e32. [PMID: 33412081 DOI: 10.1164/rccm.202006-2447im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | - Chi Chan Lee
- Department of Critical Care, Oregon Health and Science University Hospital, Portland, Oregon; and
| | - Wei-Cheng Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,Department of Education, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|