1
|
Mulatu A, Megersa N, Teferi D, Alemu T, Vetukuri RR. Biological management of coffee wilt disease ( Fusarium xylarioides) using antagonistic Trichoderma isolates. FRONTIERS IN PLANT SCIENCE 2023; 14:1113949. [PMID: 37008493 PMCID: PMC10064059 DOI: 10.3389/fpls.2023.1113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Coffee wilt disease (CWD) is a serious threat to the food security of small-scale farmers in Ethiopia, causing significant reductions in coffee yield. Currently, there are no effective control measures available against the causative agent of CWD, Fusarium xylarioides. The main objective of this study was therefore to develop, formulate, and evaluate a range of biofungicides against F. xylarioides, derived from Trichoderma species and tested under in vitro, greenhouse, and field conditions. In total, 175 Trichoderma isolates were screened as microbial biocontrol agents against F. xylarioides. The efficacy of two biofungicide formulations, wettable powder and water dispensable granules, were tested on the susceptible Geisha coffee variety in three different agro-ecological zones in southwestern Ethiopia over three years. The greenhouse experiments were set up using a complete block design, while in the field a randomized complete block design was used, with twice yearly applications of biofungicide. The test pathogen spore suspension was applied to the coffee seedlings by soil drenching, and the subsequent incidence and severity of CWD evaluated annually. The mycelial growth inhibition profiles of the Trichoderma isolates against F. xylarioides ranged from 44.5% to 84.8%. In vitro experiments revealed that T. asperelloides AU71, T. asperellum AU131 and T. longibrachiatum AU158 reduced the mycelial growth of F. xylarioides by over 80%. The greenhouse study indicated that wettable powder (WP) of T. asperellum AU131 had the highest biocontrol efficacy (84.3%), followed by T. longibrachiatum AU158 (77.9%) and T. asperelloides AU71 (71.2%); they also had a significant positive impact on plant growth. The pathogen-treated control plants had a disease severity index of 100% across all the field experiments, and of 76.7% in the greenhouse experiments. In comparison to untreated controls, the annual and cumulative disease incidence over the three years of the study period varied from 46.2 to 90%, 51.6 to 84.5%, and 58.2 to 91%, at the Teppi, Gera and Jimma field experimental locations. Overall, the greenhouse and field experiments and in vitro assays support the biocontrol potential of Trichoderma isolates, and T. asperellum AU131 and T. longibrachiatum AU158 in particular are recommended for the management of CWD under field conditions.
Collapse
Affiliation(s)
- Afrasa Mulatu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, Bule Hora University, Bule Hora, Ethiopia
| | - Negussie Megersa
- Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia
| | - Demelash Teferi
- Ethiopian Institute of Agricultural Research, Jimma Agricultural Research Center, Jimma, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
2
|
Yu G, Liu G, Liu T, Fink EH, Esker AR. Activities of Family 18 Chitinases on Amorphous Regenerated Chitin Thin Films and Dissolved Chitin Oligosaccharides: Comparison with Family 19 Chitinases. Biomacromolecules 2023; 24:566-575. [PMID: 36715568 DOI: 10.1021/acs.biomac.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from Trichoderma viride (T. viride) and family 19 chitinases from Streptomyces griseus (S. griseus) that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures. Compared to substrates of colloidal chitin or dissolved chitin derivatives and analogues, the degradation of RChitin films was deeply affected by chitinase adsorption. While the family 18 chitinases had greater solution activity on chitin oligosaccharides, the family 19 chitinases exhibited greater surface activity on RChitin films, illustrating the importance of CBDs for insoluble substrates.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Gehui Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Ethan H Fink
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Alan R Esker
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
3
|
Zhao L, He Y, Zheng Y, Xu Y, Shi S, Fan M, Gu S, Li G, Tianli W, Wang J, Li J, Deng X, Liao X, Du J, Nian F. Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Front Microbiol 2023; 14:1141720. [PMID: 37152740 PMCID: PMC10157256 DOI: 10.3389/fmicb.2023.1141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Rhizosphere microbiota play an important role in regulating soil physical and chemical properties and improving crop production performance. This study analyzed the relationship between the diversity of rhizosphere microbiota and the yield and quality of flue-cured tobacco at different transplant times (D30 group, D60 group and D90 group) and in different regions [Linxiang Boshang (BS) and Linxiang ZhangDuo (ZD)] by high-throughput sequencing technology. The results showed that there were significant differences in the physicochemical properties and rhizosphere microbiota of flue-cured tobacco rhizosphere soil at different transplanting times, and that the relative abundance of Bacillus in the rhizosphere microbiota of the D60 group was significantly increased. RDA and Pearson correlation analysis showed that Bacillus, Streptomyces and Sphingomonas were significantly correlated with soil physical and chemical properties. PIGRUSt2 function prediction results showed that compared with the D30 group, the D60 group had significantly increased metabolic pathways such as the superpathway of pyrimidine deoxyribonucleoside salvage, allantoin degradation to glyoxylate III and pyrimidine deoxyribonucleotides de novo biosynthesis III metabolic pathways. The D90 group had significantly increased metabolic pathways such as ubiquitol-8 biosynthesis (prokaryotic), ubiquitol-7 biosynthesis (prokaryotic) and ubiquitol-10 biosynthesis (prokaryotic) compared with the D60 group. In addition, the yield and quality of flue-cured tobacco in the BS region were significantly higher than those in the ZD region, and the relative abundance of Firmicutes and Bacillus in the rhizosphere microbiota of flue-cured tobacco in the BS region at the D60 transplant stage was significantly higher than that in the ZD region. In addition, the results of the hierarchical sample metabolic pathway abundance map showed that the PWY-6572 metabolic pathway was mainly realized by Paenibacillus, and that the relative abundance of flue-cured tobacco rhizosphere microbiota (Paenibacillus) participating in PWY-6572 in the D60 transplant period in the BS region was significantly higher than that in the ZD region. In conclusion, different transplanting periods of flue-cured tobacco have important effects on soil physical and chemical properties and rhizosphere microbial communities. There were significant differences in the rhizosphere microbiota and function of flue-cured tobacco in different regions, which may affect the performance and quality of this type of tobacco.
Collapse
Affiliation(s)
- Leifeng Zhao
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuansheng He
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yuanxian Zheng
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yinlian Xu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shoujie Shi
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Meixun Fan
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shaolong Gu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Guohong Li
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Wajie Tianli
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Jiming Wang
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaolin Liao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jun Du
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Jun Du,
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
- Fuzhao Nian,
| |
Collapse
|
4
|
Fifani B, Steels S, Helmus C, Delacuvellerie A, Deracinois B, Phalip V, Delvigne F, Jacques P. Coculture of Trichoderma harzianum and Bacillus velezensis Based on Metabolic Cross-Feeding Modulates Lipopeptide Production. Microorganisms 2022; 10:microorganisms10051059. [PMID: 35630500 PMCID: PMC9148127 DOI: 10.3390/microorganisms10051059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Cocultures have been widely explored for their use in deciphering microbial interaction and its impact on the metabolisms of the interacting microorganisms. In this work, we investigate, in different liquid coculture conditions, the compatibility of two microorganisms with the potential for the biocontrol of plant diseases: the fungus Trichoderma harzianum IHEM5437 and the bacterium Bacillus velezensis GA1 (a strong antifungal lipopeptide producing strain). While the Bacillus overgrew the Trichoderma in a rich medium due to its antifungal lipopeptide production, a drastically different trend was observed in a medium in which a nitrogen nutritional dependency was imposed. Indeed, in this minimum medium containing nitrate as the sole nitrogen source, cooperation between the bacterium and the fungus was established. This is reflected by the growth of both species as well as the inhibition of the expression of Bacillus genes encoding lipopeptide synthetases. Interestingly, the growth of the bacterium in the minimum medium was enabled by the amendment of the culture by the fungal supernatant, which, in this case, ensures a high production yield of lipopeptides. These results highlight, for the first time, that Trichoderma harzianum and Bacillus velezensis are able, in specific environmental conditions, to adapt their metabolisms in order to grow together.
Collapse
Affiliation(s)
- Barbara Fifani
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, TERRA—Teaching and Research Centre, Gembloux Agro-Bio Tech, University Liège, 5030 Gembloux, Belgium; (B.F.); (S.S.); (C.H.); (F.D.)
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV—Charles Viollette Institute, 59000 Lille, France; (B.D.); (V.P.)
| | - Sebastien Steels
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, TERRA—Teaching and Research Centre, Gembloux Agro-Bio Tech, University Liège, 5030 Gembloux, Belgium; (B.F.); (S.S.); (C.H.); (F.D.)
| | - Catherine Helmus
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, TERRA—Teaching and Research Centre, Gembloux Agro-Bio Tech, University Liège, 5030 Gembloux, Belgium; (B.F.); (S.S.); (C.H.); (F.D.)
| | | | - Barbara Deracinois
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV—Charles Viollette Institute, 59000 Lille, France; (B.D.); (V.P.)
| | - Vincent Phalip
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV—Charles Viollette Institute, 59000 Lille, France; (B.D.); (V.P.)
| | - Frank Delvigne
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, TERRA—Teaching and Research Centre, Gembloux Agro-Bio Tech, University Liège, 5030 Gembloux, Belgium; (B.F.); (S.S.); (C.H.); (F.D.)
| | - Philippe Jacques
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, TERRA—Teaching and Research Centre, Gembloux Agro-Bio Tech, University Liège, 5030 Gembloux, Belgium; (B.F.); (S.S.); (C.H.); (F.D.)
- Correspondence:
| |
Collapse
|
5
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
6
|
El-Shora HM, El-Sharkawy RM, Khateb AM, Darwish DB. Production and immobilization of β-glucanase from Aspergillus niger with its applications in bioethanol production and biocontrol of phytopathogenic fungi. Sci Rep 2021; 11:21000. [PMID: 34697353 PMCID: PMC8545931 DOI: 10.1038/s41598-021-00237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities. Herein, the specific objectives of the present study were to purify, characterize and immobilize β-glucanase from Aspergillus niger using covalent binding and cross linking techniques. The evaluation of β-glucanase in hydrolysis of different lignocellulosic wastes with subsequent bioethanol production and its capability in biocontrol of pathogenic fungi was investigated. Upon nutritional bioprocessing, β-glucanase production from A. niger EG-RE (MW390925.1) preferred ammonium nitrate and CMC as the best nitrogen and carbon sources, respectively. The soluble enzyme was purified by (NH4)2SO4, DEAE-Cellulose and Sephadex G200 with 10.33-fold and specific activity of 379.1 U/mg protein. Tyrosyl, sulfhydryl, tryptophanyl and arginyl were essential residues for enzyme catalysis. The purified β-glucanase was immobilized on carrageenan and chitosan with appreciable yield. However, the cross-linked enzyme exhibited superior activity along with remarkable improved thermostability and operational stability. Remarkably, the application of the above biocatalyst proved to be a promising candidate in liberating the associate lignocellulosic reducing sugars, which was utilized for ethanol production by Saccharomyces cerevisiae. The purified β-glucanase revealed an inhibitory effect on the growth of two tested phytopathogens Fusarium oxysporum and Penicillium digitatum.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Aiah M Khateb
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Doaa B Darwish
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
7
|
Pellan L, Dieye CAT, Durand N, Fontana A, Strub C, Schorr-Galindo S. Biocontrol Agents: Toolbox for the Screening of Weapons against Mycotoxigenic Fusarium. J Fungi (Basel) 2021; 7:446. [PMID: 34205071 PMCID: PMC8226957 DOI: 10.3390/jof7060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a set of experiments to screen and decipher the mechanisms of biocontrol agents (BCAs), isolated from commercial formulation, against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides. These two phytopathogens produce mycotoxins harmful to human and animal health and are responsible for the massive use of pesticides, for the protection of cereals. It is therefore essential to better understand the mechanisms of action of alternative control strategies such as the use of BCAs in order to optimize their applications. The early and late stages of interaction between BCAs and pathogens were investigated from germination of spores to the effects on perithecia (survival form of pathogen). The analysis of antagonist activities of BCAs revealed different strategies of biocontrol where chronological, process combination and specialization aspects of interactions are discussed. Streptomyces griseoviridis main strategy is based on antibiosis with the secretion of several compounds with anti-fungal and anti-germination activity, but also a mixture of hydrolytic enzymes to attack pathogens, which compensates for an important deficit in terms of spatial colonization capacity. It has good abilities in terms of nutritional competition. Trichoderma asperellum is capable of activating a very wide range of defenses and attacks combining the synthesis of various antifungal compounds (metabolite, enzymes, VOCs), with different targets (spores, mycelium, mycotoxins), and direct action by mycoparasitism and mycophagy. Concerning Pythium oligandrum, its efficiency is mainly due to its strong capacity to colonize the environment, with a direct action via microbial predation, stimulation of its reproduction at the contact of pathogens and the reduction of perithecia formation.
Collapse
Affiliation(s)
- Lucile Pellan
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Cheikh Ahmeth Tidiane Dieye
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Noël Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| |
Collapse
|
8
|
Fungal X-Intrinsic Protein Aquaporin from Trichoderma atroviride: Structural and Functional Considerations. Biomolecules 2021; 11:biom11020338. [PMID: 33672420 PMCID: PMC7927018 DOI: 10.3390/biom11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
The major intrinsic protein (MIP) superfamily is a key part of the fungal transmembrane transport network. It facilitates the transport of water and low molecular weight solutes across biomembranes. The fungal uncharacterized X-Intrinsic Protein (XIP) subfamily includes the full protein diversity of MIP. Their biological functions still remain fully hypothetical. The aim of this study is still to deepen the diversity and the structure of the XIP subfamily in light of the MIP counterparts—the aquaporins (AQPs) and aquaglyceroporins (AQGPs)—and to describe for the first time their function in the development, biomass accumulation, and mycoparasitic aptitudes of the fungal bioagent Trichoderma atroviride. The fungus-XIP clade, with one member (TriatXIP), is one of the three clades of MIPs that make up the diversity of T. atroviride MIPs, along with the AQPs (three members) and the AQGPs (three members). TriatXIP resembles those of strict aquaporins, predicting water diffusion and possibly other small polar solutes due to particularly wider ar/R constriction with a Lysine substitution at the LE2 position. The XIP loss of function in ∆TriatXIP mutants slightly delays biomass accumulation but does not impact mycoparasitic activities. ∆TriatMIP forms colonies similar to wild type; however, the hyphae are slightly thinner and colonies produce rare chlamydospores in PDA and specific media, most of which are relatively small and exhibit abnormal morphologies. To better understand the molecular causes of these deviant phenotypes, a wide-metabolic survey of the ∆TriatXIPs demonstrates that the delayed growth kinetic, correlated to a decrease in respiration rate, is caused by perturbations in the pentose phosphate pathway. Furthermore, the null expression of the XIP gene strongly impacts the expression of four expressed MIP-encoding genes of T. atroviride, a plausible compensating effect which safeguards the physiological integrity and life cycle of the fungus. This paper offers an overview of the fungal XIP family in the biocontrol agent T. atroviride which will be useful for further functional analysis of this particular MIP subfamily in vegetative growth and the environmental stress response in fungi. Ultimately, these findings have implications for the ecophysiology of Trichoderma spp. in natural, agronomic, and industrial systems.
Collapse
|
9
|
Wu Q, Dou X, Wang Q, Guan Z, Cai Y, Liao X. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology. Molecules 2018; 23:molecules23071555. [PMID: 29954113 PMCID: PMC6100237 DOI: 10.3390/molecules23071555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/26/2022] Open
Abstract
β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3)-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of Wolfiporia extensa, considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera Streptomyces (1.90%) and Arthrobacter (0.78%) belonging to the order Actinomycetales (8.64%) in the phylum Actinobacteria (18.64%) were observed in soil for P. cocos cultivation (FTL1). Actinomycetes were considered as the candidates for isolation of glucan-degrading microorganisms. Out of 58 isolates, only 11 exhibited β-1,3-glucan-degrading activity. The isolate SYBCQL belonging to the genus Kitasatospora with β-1,3-glucan-degrading activity was found and reported for the first time and the isolate SYBC17 displayed the highest yield (1.02 U/mg) among the isolates. To check the β-1,3-glucanase contribution to β-1,3-glucan-degrading activity, two genes, 17-W and 17-Q, encoding β-1,3-glucanase in SYBC17 and one gene QLK1 in SYBCQL were cloned and expressed for verification at the molecular level. Our findings collectively showed that the isolates able to secrete β-1,3-glucanase could be obtained with the assistance of high-throughput sequencing and genes expression analysis. These methods provided technical support for isolating β-1,3-glucanase-producing microorganisms.
Collapse
Affiliation(s)
- Qiulan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xin Dou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
10
|
Pinedo-Rivilla C, Collado IG, Aleu J. Metabolism of Antifungal Thiochroman-4-ones by Trichoderma viride and Botrytis cinerea. JOURNAL OF NATURAL PRODUCTS 2018; 81:1036-1040. [PMID: 29608070 DOI: 10.1021/acs.jnatprod.7b00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biotransformation of 6-methylthiochroman-4-one (1) and 6-chlorothiochroman-4-one (2) was performed using Trichoderma viride in order to obtain new derivatives with antifungal properties against the phytopathogen Botrytis cinerea. Two thiochromanone derivatives are described for the first time. Antifungal activity of these compounds was tested against two different strains of Botrytis cinerea; 1 and 2 gave 100% inhibition of Bc2100 at 100-250 μg/mL, and 3 gave a maximal inhibition of 96% of BcUCA992 at 200 μg/mL. The detoxification mechanism of 1 and 2 by B. cinerea was also investigated.
Collapse
Affiliation(s)
- Cristina Pinedo-Rivilla
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
11
|
Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 2018; 364:4563579. [PMID: 29069329 DOI: 10.1093/femsle/fnx225] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022] Open
Abstract
Phytopathogenic bacteria have caused significant damage to agricultural crops in both controlled and open cultivation practices, imposing heavy losses to farmers. Thereby, the goal of this study was to evaluate Pseudomonas aeruginosa and Bacillus stratosphericus isolated from soil has antagonistic activity against bacterial phytopathogens with the potential to control plant diseases. Isolated novel strains of P. aeruginosa and B. stratosphericus showed broad spectrum of antagonistic activity against five bacterial phytopathogens. Antagonistic activity was examined under optimized pH (8 and 7), carbon sources (lactose and starch), nitrogen sources (ammonium chloride, peptone and ammonium nitrate) for P. aeruginosa and B. stratosphericus, respectively, and biocatalyst production (chitinase, protease and amylase) was studied. Additionally, up-regulation of defense-related genes (PR-1a and PAL) was studied in tomato plants treated with P. aeruginosa and B. stratosphericus. The induction of defense-related genes in tomato plant was triggered after 12 h treatment with a cell concentration of 0.20 O.D. for P. aeruginosa and 0.21 O.D. for B. stratosphericus during treatment period. Broad spectrum antagonistic activity was observed due to antibiotic and siderophore production by P. aeruginosa and B. stratosphericus.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea.,Department of Environmental Science, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India
| | - Palanivel Velmurugan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Woo-Suk Chang
- Department of Biology, University of Texas, 701 S Nedderman Dr, Arlington, TX 76019, USA
| | - Yool-Jin Park
- Department of Ecology Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Palaninaicker Senthilkumar
- Department of Environmental Science, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India
| | - Kyung-Min Choi
- Nakdonggang Institute of Biological Resources, Sangju, Gyeongbuk 37242, South Korea
| | - Jeong-Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang, Jeonbuk 56015, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea.,Plant Medical Research Center, College of Agricultural and Life Sciences, Chonbuk National University, Jenoju, Jeonbuk 54896, South Korea
| |
Collapse
|