1
|
Ji X, Sun Z, Wu H, Zhang J, Liu S, Cao X, Wang B, Wang F, Zhang Y, Li B, Feng J, Zhao H. More powerful dysregulation of Helicobacter pylori East Asian-type CagA on intracellular signalings. BMC Microbiol 2024; 24:467. [PMID: 39528935 PMCID: PMC11552142 DOI: 10.1186/s12866-024-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chronic infection by Helicobacter pylori strains expressing cytotoxin-associated gene A (CagA) are the strongest risk factor for gastric cancer. CagA can be classified into East Asian-type and Western-type (CagAE and CagAW), with CagAE being more closely associated with gastric cancer. This study aimed to investigate the impact of CagAE on intracellular signaling pathways to explain its high oncogenicity. RESULTS Mutant H. pylori strains expressing either CagAE or CagAW were generated by transforming CagAE/W-expression plasmid into CagA-deleted G27 strain (G27ΔCagA). In human gastric epithelial cells (GES-1) infection, CagAE induced more severe cytopathic changes, including higher interleukin-8 (IL-8) secretion, reduced cell viability, more pronounced "hummingbird phenotype" alterations, and increased cell migration and invasion compared to CagAW. Transcriptome analysis revealed that CagAE had a stronger effect on the up-regulation of key intracellular processes, including tumor necrosis factor-ɑ (TNF-ɑ) signal pathway via nuclear factor kappa-B (NF-κB), inflammatory response, interferon-γ (IFN-γ) response, hypoxia, ultraviolet (UV) response, and Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) signaling. A significant upregulation of hypoxia-related genes was a notable feature of CagAE. GES-1 cells infected with CagAE exhibited more severe intracellular hypoxia and higher levels of reactive oxygen species (ROS) than those infected with CagAW. Inhibition of hypoxia-inducible factor-1α (HIF-1α), which blocks hypoxia signaling, mitigated CagAE-induced cell migration, emphasizing the role of hypoxia in mediating CagAE effects. CONCLUSIONS The study provides transcriptome evidence of CagA-associated intracellular regulation during H. pylori infection, demonstrating that CagAE exerts stronger effects on intracellular signaling than CagAW. These findings offer insights into the heightened carcinogenic potential of CagAE in H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Xiaofei Ji
- Binzhou Medical University, Yantai, China
| | - Zekun Sun
- Binzhou Medical University, Yantai, China
| | - Hao Wu
- Binzhou Medical University, Yantai, China
- Department of Blood Transfusion, Jining First People's Hospital, Jining, China
| | | | | | | | - Bin Wang
- Binzhou Medical University, Yantai, China
| | | | - Ying Zhang
- Binzhou Medical University, Yantai, China
| | - Boqing Li
- Binzhou Medical University, Yantai, China
| | | | | |
Collapse
|
2
|
Rao RSP, Ghate SD, Pinto L, Suravajhala P, Patil P, Shetty P, Ahsan N. Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria. Curr Microbiol 2024; 81:154. [PMID: 38652129 DOI: 10.1007/s00284-024-03653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in shaping the course of virulence and antibiotic resistance in H. pylori.
Collapse
Affiliation(s)
- R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Prakash Patil
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
- Department of Biochemistry, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
3
|
Saruuljavkhlan B, Alfaray RI, Oyuntsetseg K, Gantuya B, Khangai A, Renchinsengee N, Matsumoto T, Akada J, Azzaya D, Davaadorj D, Yamaoka Y. Study of Helicobacter pylori Isolated from a High-Gastric-Cancer-Risk Population: Unveiling the Comprehensive Analysis of Virulence-Associated Genes including Secretion Systems, and Genome-Wide Association Study. Cancers (Basel) 2023; 15:4528. [PMID: 37760497 PMCID: PMC10526929 DOI: 10.3390/cancers15184528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The prevalence of gastric cancer in Mongolia, in East Asia, remains the highest in the world. However, most Helicobacter pylori strains in Mongolia have a less virulent Western-type CagA. We aimed to determine how H. pylori genomic variation affected gastric diseases, especially gastric cancer, based on comprehensive genome analysis. METHODS We identified a set of 274 virulence-associated genes in H. pylori, including virulence factor and outer membrane protein (OMP) genes, the type four secretion system gene cluster, and 13 well-known virulence gene genotypes in 223 H. pylori strains and their associations with gastric cancer and other gastric diseases. We conducted a genome-wide association study on 158 H. pylori strains (15 gastric cancer and 143 non-gastric cancer strains). RESULTS Out of 274 genes, we found 13 genes were variable depending on disease outcome, especially iron regulating OMP genes. H. pylori strains from Mongolia were divided into two main subgroups: subgroup (Sg1) with high risk and Sg2 with low risk for gastric cancer. The general characteristics of Sg1 strains are that they possess more virulence genotype genes. We found nine non-synonymous single nucleotide polymorphisms in seven genes that are linked with gastric cancer strains. CONCLUSIONS Highly virulent H. pylori strains may adapt through host-influenced genomic variations, potentially impacting gastric carcinogenesis.
Collapse
Grants
- 18KK0266, 19H03473, 21H00346, 22H02871, 17K09353, 21K07898, 18K16182, 21K08010 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 2021B13 Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University
Collapse
Affiliation(s)
- Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, East Java, Indonesia
| | - Khasag Oyuntsetseg
- Endoscopy Center, Mongolia Japan Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (K.O.); (B.G.)
| | - Boldbaatar Gantuya
- Endoscopy Center, Mongolia Japan Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (K.O.); (B.G.)
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Ayush Khangai
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Namsrai Renchinsengee
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Dashdorj Azzaya
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Duger Davaadorj
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, East Java, Indonesia
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 870-1192, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ibrahim KA, El-Ashrey MK, Kashef MT, Helmy OM. Alanine racemase a promising Helicobacter pylori drug target inhibited by propanoic acid. Microbes Infect 2023; 25:105167. [PMID: 37271368 DOI: 10.1016/j.micinf.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Eradication of Helicobacter pylori, the class 1 carcinogen, faces several obstacles, which demand alternative options to conventional drug development methods. Alanine racemase (Alr) was proposed as H. pylori drug target, inhibited by propanoic acid (PA), in a previous in silico study. We investigated the possible treatment of H. pylori infection through Alr inhibition. A new model of H. pylori Alr was built, validated, and the binding of PA to the active site was modelled via molecular docking with a good docking score. PA minimum inhibitory concentration (MIC) against H. pylori ATCC 43504 and six H. pylori clinical isolates ranged from 312.5 to 416.7 ± 180 μg/ml and remained unchanged after 14 serial passages in increasing PA concentrations. The minimum bactericidal concentration of PA was 625 μg/ml. Selective Alr inhibition was confirmed by a significant PA MIC increase with increasing d-alanine concentrations. Similar PA MIC in other tested pathogens was recorded (312.5-625 μg/ml). PA lacked cytotoxicity in tested cell lines and efficiently eradicated H. pylori in a rat infection model. In conclusion, Alr is a promising broad-spectrum drug target, inhibited by PA without resistance development by repeated exposure for 14 serial passages.
Collapse
Affiliation(s)
- Kareem A Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Suez Road, Cairo, 11829, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Omneya M Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Kumar S, Mehrotra T, Talukdar D, Verma J, Chandra Karmakar B, Paul S, Chaudhuri S, Kumari Pragasam A, Bakshi S, Kumari S, Chawla M, Purohit A, Porey Karmakar S, Mutreja A, Banerjee S, Ray A, Ramamurthy T, Mukhopadyay AK, Das B. Region-specific genomic signatures of multidrug-resistant Helicobacter pylori isolated from East and South India. Gene 2022; 847:146857. [PMID: 36100116 DOI: 10.1016/j.gene.2022.146857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
Helicobacter pylori is a ubiquitous bacterium and contributes significantly to the burden of chronic gastritis, peptic ulcers, and gastric cancer across the world. Adaptive phenotypes and virulence factors in H. pylori are heterogeneous and dynamic. However, limited information is available about the molecular nature of antimicrobial resistance phenotypes and virulence factors of H. pylori strains circulating in India. In the present study, we analyzed the whole genome sequences of 143 H. pylori strains, of which 32 are isolated from two different regions (eastern and southern) of India. Genomic repertoires of individual strains show distinct region-specific signatures. We observed lower resistance phenotypes and genotypes in the East Indian (Kolkata) H. pylori isolates against amoxicillin and furazolidone antibiotics, whereas higher resistance phenotypes to metronidazole and clarithromycin. Also, at molecular level, a greater number of AMR genes were observed in the east Indian H. pylori isolates as compared to the southern Indian isolates. From our findings, we suggest that metronidazole and clarithromycin antibiotics should be used judicially in the eastern India. However, no horizontally acquired antimicrobial resistance gene was observed in the current H. pylori strains. The comparative genome analysis shows that the number of genes involved in virulence, disease and resistance of H. pylori isolated from two different regions of India is significantly different. Single-nucleotide polymorphisms (SNPs) based phylogenetic analysis distinguished H. pylori strains into different clades according to their geographical locations. Conditionally beneficial functions including antibiotic resistance phenotypes that are linked with faster evolution rates in the Indian isolates.
Collapse
Affiliation(s)
- Shakti Kumar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Tanshi Mehrotra
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Daizee Talukdar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sangita Paul
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sujit Chaudhuri
- Department of Gastroenterology, AMRI Hospital, Salt Lake, Kolkata, India
| | - Agila Kumari Pragasam
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Susmita Bakshi
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Meenal Chawla
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Ayushi Purohit
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonali Porey Karmakar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Ankur Mutreja
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge CB20QQ, United Kingdom
| | - Sayantan Banerjee
- Department of Microbiology, All India Institute of Medical Sciences, Kalyani, India
| | - Animesh Ray
- Department of Medicine, All India Institute of Medical Science, New Delhi, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K Mukhopadyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
6
|
Ibrahim KA, Kashef MT, Elkhamissy TR, Ramadan MA, Helmy OM. Aspartate α-decarboxylase a new therapeutic target in the fight against Helicobacter pylori infection. Front Microbiol 2022; 13:1019666. [DOI: 10.3389/fmicb.2022.1019666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Effective eradication therapy for Helicobacter pylori is a worldwide demand. Aspartate α-decarboxylase (ADC) was reported as a drug target in H. pylori, in an in silico study, with malonic acid (MA) as its inhibitor. We evaluated eradicating H. pylori infection through ADC inhibition and the possibility of resistance development. MA binding to ADC was modeled via molecular docking. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of MA were determined against H. pylori ATCC 43504, and a clinical H. pylori isolate. To confirm selective ADC inhibition, we redetermined the MIC in the presence of products of the inhibited enzymatic pathway: β-alanine and pantothenate. HPLC was used to assay the enzymatic activity of H. pylori 6x-his tagged ADC in the presence of different MA concentrations. H. pylori strains were serially exposed to MA for 14 passages, and the MICs were determined. Cytotoxicity in different cell lines was tested. The efficiency of ADC inhibition in treating H. pylori infections was evaluated using a Sprague–Dawley (SD) rat infection model. MA spectrum of activity was determined in different pathogens. MA binds to H. pylori ADC active site with a good docking score. The MIC of MA against H. pylori ranged from 0.5 to 0.75 mg/mL with MBC of 1.5 mg/mL. Increasing β-alanine and pantothenate concentrations proportionally increased MA MIC. The 6x-his tagged ADC activity decreased by increasing MA concentration. No resistance to ADC inhibition was recorded after 14 passages; MA lacked cytotoxicity in all tested cell lines. ADC inhibition effectively eradicated H. pylori infection in SD rats. MA had MIC between 0.625 to 1.25 mg/mL against the tested bacterial pathogens. In conclusion, ADC is a promising target for effectively eradicating H. pylori infection that is not affected by resistance development, besides being of broad-spectrum presence in different pathogens. MA provides a lead molecule for the development of an anti-helicobacter ADC inhibitor. This provides hope for saving the lives of those at high risk of infection with the carcinogenic H. pylori.
Collapse
|
7
|
Altanbayar O, Amgalanbaatar A, Battogtokh C, Bayarjargal N, Belick D, Kohns Vasconcelos M, Mackenzie CR, Pfeffer K, Henrich B. Characterization of the cagA-gene in Helicobacter pylori in Mongolia and detection of two EPIYA-A enriched CagA types. Int J Med Microbiol 2022; 312:151552. [DOI: 10.1016/j.ijmm.2022.151552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
|
8
|
Hanafiah A, Razak SA, Neoh HM, Zin NM, Lopes BS. The heterogeneic distribution of Helicobacter pylori cag pathogenicity island reflects different pathologies in multiracial Malaysian population. Braz J Infect Dis 2020; 24:545-551. [PMID: 33157035 PMCID: PMC9392095 DOI: 10.1016/j.bjid.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Results Conclusions
Collapse
|
9
|
Salih BA, Karakus C, Ulupinar Z, Akbas F, Uslu M, Yazici D, Bolek BK, Bayyurt N, Turkay C. Cloning, expression and characterization of recombinant CagA protein of Helicobacter pylori using monoclonal antibodies: Its potential in diagnostics. Biologicals 2020; 68:26-31. [DOI: 10.1016/j.biologicals.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
|
10
|
Tucker RM, Augustin AD, Hayee BH, Bjarnason I, Taylor D, Weller C, Charlett A, Dobbs SM, Dobbs RJ. Role of Helicobacters in Neuropsychiatric Disease: A Systematic Review in Idiopathic Parkinsonism. J Clin Med 2020; 9:jcm9072159. [PMID: 32650535 PMCID: PMC7408992 DOI: 10.3390/jcm9072159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Interest in an aetiopathogenic role for Helicobacter in neuropsychiatric diseases started with idiopathic parkinsonism (IP), where the cardinal signs can be assessed objectively. This systematic review, using an EMBASE database search, addresses Oxford Centre for Evidence-Based Medicine based questions on the inter-relationship of Helicobacter and IP, the benefits of eradicating Helicobacter in IP and the outcome of not treating. The search strategy was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines: 21 of 204 articles met the inclusion criteria. The results show that the assumption that any benefit of Helicobacter eradication results from improved levodopa bioavailability is unjustified. The inter-relationship between Helicobacter and IP is well-established. H. pylori virulence markers (associated with autoimmunity and immune tolerance) influence the risk, severity and progression of IP. The birth cohort effect for virulence marker antibodies, seen in controls, is obliterated in IP, suggesting causality. Successful H. pylori eradication in IP is disease-modifying (even in anti-parkinsonian treatment-naïve patients) but not preventive. Hypokinesia regresses with eradication and overall motor severity lessens. Eradication may influence gastrointestinal microbiota adversely, unlocking the next stage in the natural history, the development of rigidity. Failed eradication worsens hypokinesia, as does the presence/persistence of H. pylori at molecular level only. Adequate prognostic assessment of the consequences of not treating Helicobacter, for IP, is prevented by a short follow-up. We conclude that Helicobacter is a pathophysiological driver of IP.
Collapse
Affiliation(s)
- Rosalind M. Tucker
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- The Maudsley Hospital, London SE5 8AZ, UK
| | - Aisha D. Augustin
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- The Maudsley Hospital, London SE5 8AZ, UK
| | - Bu’ Hussain Hayee
- Gastroenterology, King’s College Hospital, London SE5 9RS, UK; (B.H.H.); (I.B.)
| | - Ingvar Bjarnason
- Gastroenterology, King’s College Hospital, London SE5 9RS, UK; (B.H.H.); (I.B.)
| | - David Taylor
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- The Maudsley Hospital, London SE5 8AZ, UK
| | - Clive Weller
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
| | - André Charlett
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- Statistics, Modelling and Economics, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Sylvia M Dobbs
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- The Maudsley Hospital, London SE5 8AZ, UK
- Gastroenterology, King’s College Hospital, London SE5 9RS, UK; (B.H.H.); (I.B.)
- Correspondence:
| | - R John Dobbs
- Pharmaceutical Sciences, King’s College, London SE1 9NH, UK; (R.M.T.); (A.D.A.); (D.T.); (C.W.); (A.C.); (R.J.D.)
- The Maudsley Hospital, London SE5 8AZ, UK
- Gastroenterology, King’s College Hospital, London SE5 9RS, UK; (B.H.H.); (I.B.)
| |
Collapse
|
11
|
Genetic variation in the cag pathogenicity island of Helicobacter pylori strains detected from gastroduodenal patients in Thailand. Braz J Microbiol 2020; 51:1093-1101. [PMID: 32410092 DOI: 10.1007/s42770-020-00292-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
There is a lack of evidence of genetic variation in the Helicobacter pylori cag-PAI in Thailand, a region with the low incidence of gastric cancer. To clarify this issue, variation in the H. pylori cag-PAI in strains detected in Thailand was characterized and simultaneously compared with strains isolated from a high-risk population in Korea. The presence of ten gene clusters within cag-PAI (cagA, cagE, cagG, cagH, cagL, cagM, cagT, orf13, virB11, and orf10) and IS605 was characterized in H. pylori strains detected from these two countries. The cagA genotypes and EPIYA motifs were analyzed by DNA sequencing. The overall proportion of the ten cag-PAI genes that were detected ranged between 66 and 79%; additionally, approximately 48% of the strains from Thai patients contained an intact cag-PAI structure, while a significantly higher proportion (80%) of the strains from Korean patients had an intact cag-PAI. A significantly higher proportion of IS605 was detected in strains from Thai patients (55%). Analysis of cagA genotypes and EPIYA motifs revealed a higher frequency of Western-type cagA in Thai patients (87%) relative to Korean patients (8%) who were predominately associated with the East Asian-type cagA (92%). Variations in the Western-type cagA in the Thai population, such as EPIYA-BC patterns and EPIYA-like sequences (EPIYT), were mainly detected as compared with the Korean population (p < 0.05). In summary, H. pylori strains that colonize the Thai population tend to be associated with low virulence due to distinctive cag-PAI variation, which may partially explain the Asian paradox phenomenon in Thailand.
Collapse
|
12
|
Hanafiah A, Lopes BS. Genetic diversity and virulence characteristics of Helicobacter pylori isolates in different human ethnic groups. INFECTION GENETICS AND EVOLUTION 2019; 78:104135. [PMID: 31837482 DOI: 10.1016/j.meegid.2019.104135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is the most predominant bacterium in almost 50% of the world's population and colonization causes a persistent inflammatory response leading to chronic gastritis. It shows high genetic diversity and individuals generally harbour a distinct bacterial population. With the advancement of whole-genome sequencing technology, new H. pylori subpopulations have been identified that show admixture between various H. pylori strains. Genotypic variation of H. pylori may be related to the presence of virulence factors among strains and is associated with different outcomes of infection in different individuals. This review summarizes the genetic diversity in H. pylori strain populations and its virulence characteristics responsible for variable outcomes in different ethnic groups.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Bruno S Lopes
- Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, 0:025 Polwarth Building, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
13
|
Khan M, Khan S, Ali A, Akbar H, Sayaf AM, Khan A, Wei DQ. Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci Rep 2019; 9:13321. [PMID: 31527719 PMCID: PMC6746805 DOI: 10.1038/s41598-019-49354-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter Pylori is a known causal agent of gastric malignancies and peptic ulcers. The extremophile nature of this bacterium is protecting it from designing a potent drug against it. Therefore, the use of computational approaches to design antigenic, stable and safe vaccine against this pathogen could help to control the infections associated with it. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a multi-epitopes subunit vaccine against H. Pylori. A total of 7 CTL and 12 HTL antigenic epitopes based on c-terminal cleavage and MHC binding scores were predicted from the four selected proteins (CagA, OipA, GroEL and cagA). The predicted epitopes were joined by AYY and GPGPG linkers. Β-defensins adjuvant was added to the N-terminus of the vaccine. For validation, immunogenicity, allergenicity and physiochemical analysis were conducted. The designed vaccine is likely antigenic in nature and produced robust and substantial interactions with Toll-like receptors (TLR-2, 4, 5, and 9). The vaccine developed was also subjected to an in silico cloning and immune response prediction model, which verified its efficiency of expression and the immune system provoking response. These analyses indicate that the suggested vaccine may produce particular immune responses against H. pylori, but laboratory validation is needed to verify the safety and immunogenicity status of the suggested vaccine design.
Collapse
Affiliation(s)
- Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Shahzeb Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Asim Ali
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Hameed Akbar
- Laboratory of Cellular Dynamics, School of Life Sciences, University of Science and Technology of China (USTC), Anhui Sheng, P.R. China
| | - Abrar Mohammad Sayaf
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Abbas Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan.,Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| |
Collapse
|
14
|
Signal V, Gurney J, Inns S, McLeod M, Sika-Paotonu D, Sowerbutts S, Teng A, Sarfati D. Helicobacter pylori, stomach cancer and its prevention in New Zealand. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1650081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virginia Signal
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jason Gurney
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Melissa McLeod
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Dianne Sika-Paotonu
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, New Zealand
- Dean’s Department, University of Otago, Wellington, New Zealand
- Wesfarmers Centre for Vaccines & Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Sam Sowerbutts
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Andrea Teng
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Diana Sarfati
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
15
|
Stagnation in Decreasing Gastric Cancer Incidence and Mortality in Quito: Time Trend Analysis, 1985-2013. J Cancer Epidemiol 2019; 2019:1504894. [PMID: 30936917 PMCID: PMC6413390 DOI: 10.1155/2019/1504894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Despite the significant global decline in mortality and incidence, gastric cancer (GC) remains a very common cause of illness and death in the Latin American region. This article seeks to describe, in depth, the time trend of incidence and mortality of GC in the city of Quito, from 1985 to 2013. Methods Using data from the Quito Cancer Registry, annual sex-specific age-standardized incidence and mortality rates were calculated. The analysis included all types of GC together, as well as by histological subtype. Joinpoint regression analysis was performed to estimate the annual percentage change (EAPC). To evaluate cohort and period effects, Age-Period-Cohort (APC) modeling was performed. Results Over time, incidence rate decreased from 30.4 to 18.8 cases in men and from 20.1 to 12.9 cases in women. The mortality rate decreased from 17.5 to 14.4 deaths in men and from 14.2 to 10.9 deaths in women. The incidence trend was composed of a first period (1986-1999) of strong decline (EAPC Men= -2.6, 95% Confidence Interval [CI]: -4.2, -0.9; EAPC Women= -3.2, 95% CI: -4.6, -1.9), followed by a less important decrease in men (EAPC= -0.8, 95% CI:-2.5, 0.9) and a slight increase in women (EAPC= 0.7, 95% CI: -1.4; 2.8). Mortality rates were constantly decreasing in both men (EAPC= -0.5, 95% CI: -0.9, -0.1) and women (EAPC= -0.9, 95% CI: -1.7, -0.1) throughout the period of analysis. Conclusions The declines in incidence and mortality rates are stagnating. It is important to take measures to further reduce the high burden of GC.
Collapse
|
16
|
Junaid M, Shah M, Khan A, Li CD, Khan MT, Kaushik AC, Ali A, Mehmood A, Nangraj AS, Choi S, Wei DQ. Structural-dynamic insights into the H. pylori cytotoxin-associated gene A (CagA) and its abrogation to interact with the tumor suppressor protein ASPP2 using decoy peptides. J Biomol Struct Dyn 2018; 37:4035-4050. [PMID: 30328798 DOI: 10.1080/07391102.2018.1537895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori (H. pylori) is one of the most extensively studied Gram-negative bacteria due to its implication in gastric cancer. The oncogenicity of H. pylori is associated with cytotoxin-associated gene A (CagA), which is injected into epithelial cells lining the stomach. Both the C- and N-termini of CagA are involved in the interaction with several host proteins, thereby disrupting vital cellular functions, such as cell adhesion, cell cycle, intracellular signal transduction, and cytoskeletal structure. The N-terminus of CagA interacts with the tumor-suppressing protein, apoptosis-stimulating protein of p53 (ASPP2), subsequently disrupting the apoptotic function of tumor suppressor gene p53. Here, we present the in-depth molecular dynamic mechanism of the CagA-ASPP2 interaction and highlight hot-spot residues through in silico mutagenesis. Our findings are in agreement with previous studies and further suggest other residues that are crucial for the CagA-ASPP2 interaction. Furthermore, the ASPP2-binding pocket possesses potential druggability and could be engaged by decoy peptides, identified through a machine-learning system and suggested in this study. The binding affinities of these peptides with CagA were monitored through extensive computational procedures and reported herein. While CagA is crucial for the oncogenicity of H. pylori, our designed peptides possess the potential to inhibit CagA and restore the tumor suppressor function of ASPP2.
Collapse
Affiliation(s)
- Muhammad Junaid
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Masaud Shah
- b Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Abbas Khan
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Cheng-Dong Li
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Muhammad Tahir Khan
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Aman Chandra Kaushik
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Arif Ali
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Aamir Mehmood
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Asma Sindhoo Nangraj
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Sangdun Choi
- b Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Dong-Qing Wei
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
17
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|