1
|
Menarbazari AA, Mansoori-Kermani A, Mashayekhan S, Soleimani A. 3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering. Int J Biol Macromol 2024; 265:130827. [PMID: 38484823 DOI: 10.1016/j.ijbiomac.2024.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The treatment of large craniofacial bone defects requires more advanced and effective strategies than bone grafts since such defects are challenging and cannot heal without intervention. In this regard, 3D printing offers promising solutions through the fabrication of scaffolds with the required shape, porosity, and various biomaterials suitable for specific tissues. In this study, 3D-printed polycaprolactone (PCL)-based scaffolds containing up to 30 % tricalcium silicate (TCS) were fabricated and then modified by incorporation of decellularized bone matrix- oxidized sodium alginate (DBM-OA). The results showed that the addition of 20 % TCS increased compressive modulus by 4.5-fold, yield strength by 12-fold, and toughness by 15-fold compared to pure PCL. In addition, the samples containing TCS revealed the formation of crystalline phases with a Ca/P ratio near that of hydroxyapatite (1.67). Cellular experiment results demonstrated that TCS have improved the biocompatibility of PCL-based scaffolds. On day 7, the scaffolds modified with DBM and 20 % TCS exhibited 8-fold enhancement of ALP activity of placenta-derived mesenchymal stem/stromal cells (P-MSCs) compared to pure PCL scaffolds. The present study's results suggest that the incorporation of TCS and DBM-OA into the PCL-based scaffold improves its mechanical behavior, bioactivity, biocompatibility, and promotes mineralization and early osteogenic activity.
Collapse
Affiliation(s)
| | | | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Afsane Soleimani
- Tarbiat Modares University, Faculty of Medical Sciences, Department of Clinical Biochemistry, Tehran, Iran
| |
Collapse
|
2
|
Eghbali H, Sadeghi M, Noroozi M, Movahedifar F. Vanillin crosslinked 3D porous chitosan hydrogel for biomedicine applications: Preparation and characterization. J Mech Behav Biomed Mater 2023; 145:106044. [PMID: 37506568 DOI: 10.1016/j.jmbbm.2023.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Crosslinked chitosan (CS) is one of the most useable hydrogels in biomedicine and tissue engineering. Unlike most chitosan crosslinkers that are toxic, such as glutaraldehyde, vanillin is a natural, biocompatible, and antimicrobial alternative. The crosslinking of chitosan and vanillin consists of Schiff base bonds between the amines of chitosan and the aldehydes of vanillin, in addition to hydrogen bonds formed across the network. In most studies, the combination of chitosan and vanillin has been investigated in small sizes (micro/nanoscale and biofilms). In this study, a chitosan-vanillin (CV) hydrogel was studied on a macroscale with a three-dimensional porous structure, and it was compared with chitosan crosslinked with glutaraldehyde (CG) on the same scale. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (FE-SEM) used to identify the bonds formed and examine the morphology of the hydrogels. The gel content, swelling, porosity, mechanical properties, cell viability (on L929 and mesenchymal cells), and antibacterial activity (against Escherichia coli and Staphylococcus aureus) of the samples were investigated. The results showed that the CV had both gel content and high porosity (>90%), with an interconnected porous network of uniform pore size. The CV hydrogel exhibited good antibacterial activity and cell viability. In terms of mechanical properties, CV has weaker mechanical properties compared to CG in the dry state, while the mechanical properties of CV have more improved in the swollen state compared to CG.
Collapse
Affiliation(s)
- Hadis Eghbali
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohsen Sadeghi
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mojgan Noroozi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fahimeh Movahedifar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
3
|
Robertson EM, Hixon KR, McBride-Gagyi SH, Sell SA. Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37243397 DOI: 10.1002/jbm.b.35283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well-studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential.
Collapse
Affiliation(s)
- E M Robertson
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - K R Hixon
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - S H McBride-Gagyi
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - S A Sell
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Bai L, Tao G, Feng M, Xie Y, Cai S, Peng S, Xiao J. Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2023; 15:pharmaceutics15051334. [PMID: 37242576 DOI: 10.3390/pharmaceutics15051334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
Collapse
Affiliation(s)
- Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maogeng Feng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Du J, Zhang Y, Wang J, Xu M, Qin M, Zhang X, Huang D. Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:845-859. [PMID: 36346014 DOI: 10.1080/09205063.2022.2145871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work is intended to provide a base for further investigation of the composite scaffolds for bone tissue engineering, and whitlockite/polyurethane (WH/PU) scaffolds, in particular. WH Ca18Mg2(HPO4)2(PO4)12 was successfully prepared by means of a chemical reaction between Ca(OH)2, Mg(OH)2 and H3PO4. WH/PU scaffolds were synthesized via in situ polymerization. Synthesized WH particles and WH/PU composite scaffolds were characterized using FTIR, XRD, SEM and EDS. The porosity of scaffolds was calculated by the liquid displacement method. The water contact angle of scaffolds was tested. Mechanical characterization of WH/PU composite scaffolds was evaluated according to monotonic and cyclic compression examination. MC3T3-E1 cells were employed to evaluate the cytocompatibility of scaffolds. The results showed that WH and PU were completely integrated into composite biomaterials. The maximum compressive strength and elastic modulus of WH/PU composite scaffold reached up to 5.2 and 14.1 MPa, respectively. WH/PU composite scaffold had maximum 73% porosity. The minimum contact angle of WH/PU composite scaffold was 89.16°. WH/PU composite scaffolds have a good elasticity. Cyclic compression tests showed that scaffold could recover 90% of its original shape 1 h after removing the load. WH/PU composite scaffolds exhibited a high affinity to MC3T3-E1 cells. WH/PU composite scaffolds significantly promoted proliferation and alkaline phosphatase activity of MC3T3-E1 cells when compared to those grown on tissue culture well plates. It is suggested that the WH/PU scaffolds might be suitable for the application of bone tissue engineering.
Collapse
Affiliation(s)
- Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou 570228, P. R. China
| | - Yang Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiaqi Wang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miao Qin
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiumei Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
6
|
Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022; 22:327. [PMID: 35941678 PMCID: PMC9358902 DOI: 10.1186/s12903-022-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the feasibility of the 3D printed scaffold for periapical bone defects. Methods In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05). Results We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory. Conclusions The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects. Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02362-4.
Collapse
Affiliation(s)
- Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyin Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyan Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
7
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Mandibular reconstruction of a Hemifacial Microsomia using virtual surgical planning and titanium patient specific implant: A case report. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2021.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Vilela MJC, Colaço BJA, Ventura J, Monteiro FJM, Salgado CL. Translational Research for Orthopedic Bone Graft Development. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4130. [PMID: 34361324 PMCID: PMC8348134 DOI: 10.3390/ma14154130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Designing biomaterials for bone-substitute applications is still a challenge regarding the natural complex structure of hard tissues. Aiming at bone regeneration applications, scaffolds based on natural collagen and synthetic nanohydroxyapatite were developed, and they showed adequate mechanical and biological properties. The objective of this work was to perform and evaluate a scaled-up production process of this porous biocomposite scaffold, which promotes bone regeneration and works as a barrier for both fibrosis and the proliferation of scar tissue. The material was produced using a prototype bioreactor at an industrial scale, instead of laboratory production at the bench, in order to produce an appropriate medical device for the orthopedic market. Prototypes were produced in porous membranes that were e-beam irradiated (the sterilization process) and then analysed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), dynamic mechanical analysis (DMA), cytotoxicity tests with mice fibroblasts (L929), human osteoblast-like cells (MG63) and human MSC osteogenic differentiation (HBMSC) with alkaline phosphatase (ALP) activity and qPCR for osteogenic gene expression. The prototypes were also implanted into critical-size bone defects (rabbits' tibia) for 5 and 15 weeks, and after that were analysed by microCT and histology. The tests performed for the physical characterization of the materials showed the ability of the scaffolds to absorb and retain water-based solvents, as well as adequate mechanical resistance and viscoelastic properties. The cryogels had a heteroporous morphology with microporosity and macroporosity, which are essential conditions for the interaction between the cells and materials, and which consequently promote bone regeneration. Regarding the biological studies, all of the studied cryogels were non-cytotoxic by direct or indirect contact with cells. In fact, the scaffolds promoted the proliferation of the human MSCs, as well as the expression of the osteoblastic phenotype (osteogenic differentiation). The in vivo results showed bone tissue ingrowth and the materials' degradation, filling the critical bone defect after 15 weeks. Before and after irradiation, the studied scaffolds showed similar properties when compared to the results published in the literature. In conclusion, the material production process upscaling was optimized and the obtained prototypes showed reproducible properties relative to the bench development, and should be able to be commercialized. Therefore, it was a successful effort to harness knowledge from the basic sciences to produce a new biomedical device and enhance human health and wellbeing.
Collapse
Affiliation(s)
- Maria J. C. Vilela
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.J.C.V.); (F.J.M.M.)
- Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno J. A. Colaço
- Department of Animal Science, CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | | | - Fernando J. M. Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.J.C.V.); (F.J.M.M.)
- Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Christiane L. Salgado
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.J.C.V.); (F.J.M.M.)
- Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Poorna MR, Jayakumar R, Chen JP, Mony U. Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids Surf B Biointerfaces 2021; 207:111991. [PMID: 34333302 DOI: 10.1016/j.colsurfb.2021.111991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan, ROC.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
11
|
Virani FR, Chua EC, Timbang MR, Hsieh TY, Senders CW. Three-Dimensional Printing in Cleft Care: A Systematic Review. Cleft Palate Craniofac J 2021; 59:484-496. [PMID: 33960208 DOI: 10.1177/10556656211013175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To determine the current applications of 3-dimensional (3D) printing in the care of patients with cleft lip and palate. We also reviewed 3D printing limitations, financial analysis, and future implications. DESIGN Retrospective systematic review. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used by 3 independent reviewers. Articles were identified from Cochrane library, Ovid Medline, and Embase. Search terms included 3D printing, 3 dimensional printing, additive manufacturing, rapid prototyping, cleft lip, and cleft palate. Exclusion criteria included articles not in English, animal studies, reviews without original data, oral presentations, abstracts, opinion pieces, and articles without relevance to 3D printing or cleft lip and palate. MAIN OUTCOME MEASURES Primary outcome measure was the purpose of 3D printing in the care of patients with cleft lip and palate. Secondary outcome measures were cost analysis and clinical outcomes. RESULTS Eight-four articles were identified, and 39 met inclusion/exclusion criteria. Eleven studies used 3D printing models for nasoalveolar molding. Patient-specific implants were developed via 3D printing in 6 articles. Surgical planning was conducted via 3D printing in 8 studies. Eight articles utilized 3D printing for anatomic models/educational purposes. 3-Dimensional printed models were used for surgical simulation/training in 6 articles. Bioprinting was utilized in 4 studies. Secondary outcome of cost was addressed in 8 articles. CONCLUSION 3-Dimensional printing for the care of patients with cleft lip and palate has several applications. Potential advantages of utilizing this technology are demonstrated; however, literature is largely descriptive in nature with few clinical outcome measures. Future direction should be aimed at standardized reporting to include clinical outcomes, cost, material, printing method, and results.
Collapse
Affiliation(s)
- Farrukh R Virani
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Evan C Chua
- School of Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Mary Roz Timbang
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Craig W Senders
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
12
|
Krasnov MS, Shaikhaliev AI, Korshakov EV, Gasbanov GA, Korgoloev RS, Sinitskaya ES, Sidorskii EV, Yamskova VP, Lozinsky VI. Changes in Rat Bone Tissue at the Site of the Defect In Vivo under the Effect of a Cryogenically Structured Albumin Sponge Containing a Bioregulator. Bull Exp Biol Med 2021; 170:805-808. [PMID: 33893964 DOI: 10.1007/s10517-021-05160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/21/2022]
Abstract
We performed a morphological study of the bone tissue after implantation of a cryogenically structured albumin sponge containing a bioregulator isolated from blood serum into an extensive experimental defect of the femur. By day 90, no complete reparation of the bone tissue was achieved in the control group (without implantation of 3D carrier), a loose spongy bone is formed at the site of the defect. After implantation of the 3D carrier without serum bioregulator, the defect was closed, but the formed bone was loose and contained no inflammation foci. After the defect was filed with the albumin sponge with the bioregulator, the repair pattern corresponded to the processes of epimorphic tissue regeneration. The results suggest that cryogenically structured protein material in combination with a serum bioregulator ensured complete restoration of the bone tissue.
Collapse
Affiliation(s)
- M S Krasnov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - A I Shaikhaliev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E V Korshakov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - G A Gasbanov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - R S Korgoloev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E S Sinitskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - E V Sidorskii
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - V P Yamskova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Huang S, Yu F, Cheng Y, Li Y, Chen Y, Tang J, Bei Y, Tang Q, Zhao Y, Huang Y, Xiang Q. Transforming Growth Factor-β3/Recombinant Human-like Collagen/Chitosan Freeze-Dried Sponge Primed With Human Periodontal Ligament Stem Cells Promotes Bone Regeneration in Calvarial Defect Rats. Front Pharmacol 2021; 12:678322. [PMID: 33967817 PMCID: PMC8103166 DOI: 10.3389/fphar.2021.678322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with a skull defect are at risk of developing cerebrospinal fluid leakage and ascending bacterial meningitis at >10% per year. However, treatment with stem cells has brought great hope to large-area cranial defects. Having found that transforming growth factor (TGF)-β3 can promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), we designed a hybrid TGF-β3/recombinant human-like collagen recombinant human collagen/chitosan (CS) freeze-dried sponge (TRFS) loading hPDLSCs (TRFS-h) to repair skull defects in rats. CFS with 2% CS was selected based on the swelling degree, water absorption, and moisture retention. The CS freeze-dried sponge (CFS) formed a porous three-dimensional structure, as observed by scanning electron microscopy. In addition, cytotoxicity experiments and calcein-AM/PI staining showed that TRFS had a good cellular compatibility and could be degraded completely at 90 days in the implantation site. Furthermore, bone healing was evaluated using micro-computed tomography in rat skull defect models. The bone volume and bone volume fraction were higher in TRFS loaded with hPDLSCs (TRFS-h) group than in the controls (p < 0.01, vs. CFS or TRFS alone). The immunohistochemical results indicated that the expression of Runx2, BMP-2, and collagen-1 (COL Ⅰ) in cells surrounding bone defects in the experimental group was higher than those in the other groups (p < 0.01, vs. CFS or TRFS alone). Taken together, hPDLSCs could proliferate and undergo osteogenic differentiation in TRFS (p < 0.05), and TRFS-h accelerated bone repair in calvarial defect rats. Our research revealed that hPDLSCs could function as seeded cells for skull injury, and their osteogenic differentiation could be accelerated by TGF-β3. This represents an effective therapeutic strategy for restoring traumatic defects of the skull.
Collapse
Affiliation(s)
- Shiyi Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Yu Bei
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qingxia Tang
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue requires a range of complex mechanisms to allow the restoration of its structure and function. Bone healing is a signaling cascade process, involving cells secreting cytokines, growth factors, and pro-inflammatory factors in the defect site that will, subsequently, recruit surrounding stem cells to migrate, proliferate, and differentiate into bone-forming cells. Bioactive functional scaffolds could be applied to improve the bone healing processes where the organism is not able to fully regenerate the lost tissue. However, to be optimal, such scaffolds should act as osteoconductors - supporting bone-forming cells, providing nutrients, and sustaining the arrival of new blood vessels, and act as osteoinducers - slowly releasing signaling molecules that stimulate mesenchymal stem cells to differentiate and deposit mineralized bone matrix. Different compositions and shapes of scaffolds, cutting-edge technologies, application of signaling molecules to promote cell differentiation, and high-quality biomaterials are reaching favorable outcomes towards osteoblastic differentiation of stem cells in in vitro and in vivo researches for bone regeneration. Hydrogel-based biomaterials are being pointed as promising for bone tissue regeneration; however, despite all the research and high-impact scientific publications, there are still several challenges that prevent the use of hydrogel-based scaffolds for bone regeneration being feasible for their clinical application. Hence, the objective of this review is to consolidate and report, based on the current scientific literature, the approaches for bone tissue regeneration using bioactive hydrogel-based scaffolds, cell-based therapies, and three-dimensional bioprinting to define the key challenges preventing their use in clinical applications.
Collapse
Affiliation(s)
- Mariane B Sordi
- Research Center on Dental Implants, Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil; Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| | - Ariadne Cruz
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Ricardo Magini
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| |
Collapse
|
15
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
16
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
17
|
Miszuk JM, Hu J, Sun H. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:6538-6545. [PMID: 33163910 DOI: 10.1021/acsabm.0c00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of large bone defects using biomaterials-based strategies has been a significant challenge due to the complex characteristics required for tissue regeneration, especially in the craniofacial region. Tissue engineering strategies aimed at restoration of function face challenges in material selection, synthesis technique, and choice of bioactive factor release in combination with all aforementioned facets. Biomimetic nanofibrous (NF) scaffolds are attractive vehicles for tissue engineering due to their ability to promote endogenous bone regeneration by mimicking the shape and chemistry of natural bone extracellular matrix (ECM). To date, several techniques for generation of biomimetic NF scaffolds have been discovered, each possessing several advantages and drawbacks. This spotlight highlights two of the more popular techniques for biomimetic NF scaffold synthesis: electrospinning and thermally-induced phase separation (TIPS), covering development from inception in each technique as well as discussing the most recent innovations in each fabrication method.
Collapse
Affiliation(s)
- Jacob M Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Palomino-Durand C, Lopez M, Marchandise P, Martel B, Blanchemain N, Chai F. Chitosan/Polycyclodextrin (CHT/PCD)-Based Sponges Delivering VEGF to Enhance Angiogenesis for Bone Regeneration. Pharmaceutics 2020; 12:pharmaceutics12090784. [PMID: 32825081 PMCID: PMC7557476 DOI: 10.3390/pharmaceutics12090784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vascularization is one of the main challenges in bone tissue engineering (BTE). In this study, vascular endothelial growth factor (VEGF), known for its angiogenic effect, was delivered by our developed sponge, derived from a polyelectrolyte complexes hydrogel between chitosan (CHT) and anionic cyclodextrin polymer (PCD). This sponge, as a scaffold for growth factor delivery, was formed by freeze-drying a homogeneous CHT/PCD hydrogel, and thereafter stabilized by a thermal treatment. Microstructure, water-uptake, biodegradation, mechanical properties, and cytocompatibility of sponges were assessed. VEGF-delivery following incubation in medium was then evaluated by monitoring the VEGF-release profile and its bioactivity. CHT/PCD sponge showed a porous (open porosity of 87.5%) interconnected microstructure with pores of different sizes (an average pore size of 153 μm), a slow biodegradation (12% till 21 days), a high water-uptake capacity (~600% in 2 h), an elastic property under compression (elastic modulus of compression 256 ± 4 kPa), and a good cytocompatibility in contact with osteoblast and endothelial cells. The kinetic release of VEGF was found to exert a pro-proliferation and a pro-migration effect on endothelial cells, which are two important processes during scaffold vascularization. Hence, CHT/PCD sponges were promising vehicles for the delivery of growth factors in BTE.
Collapse
Affiliation(s)
- Carla Palomino-Durand
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Marco Lopez
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Pierre Marchandise
- ULR 4490–MABLab–Adiposité Médullaire et Os, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France;
- ULR 4490–MABLab–Adiposité Médullaire et Os, Univ. Littoral Côte d’Opale, 62200 Boulogne-sur-Mer, France
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), University of Lille, 59655 Lille, France;
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Feng Chai
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
- Correspondence: ; Tel.: +33-320-626-997
| |
Collapse
|
19
|
Taylor MJ, Graham DJ, Gamble LJ. Time-of-flight secondary ion mass spectrometry three-dimensional imaging of surface modifications in poly(caprolactone) scaffold pores. J Biomed Mater Res A 2019; 107:2195-2204. [PMID: 31116499 PMCID: PMC6690353 DOI: 10.1002/jbm.a.36729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
Scaffolds composed of synthetic polymers such as poly(caprolactone) (PCL) are widely used for the support and repair of tissues in biomedicine. Pores are common features in scaffolds as they facilitate cell penetration. Various surface modifications can be performed to promote key biological responses to these scaffolds. However, verifying the chemistry of these materials post surface modification is problematic due to the combination of three-dimensional (3D) topography and surface sensitivity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is commonly used to correlate surface chemistry with cell response. In this study, 3D imaging mass spectrometry analysis of surface modified synthetic polymer scaffolds is demonstrated using PCL porous scaffold, a pore filling polymer sample preparation, and 3D imaging ToF-SIMS. We apply a simple sample preparation procedure, filling the scaffold pores with a poly(vinyl alcohol)/glycerol mixture to remove topographic influence on image quality. This filling method allows the scaffold (PCL) and filler secondary ions to be reconstructed into a 3D chemical image of the pore. Furthermore, we show that surface modifications in the pores of synthetic polymer scaffolds can be mapped in 3D. Imaging of "dry" and "wet" surface modifications is demonstrated as well as a comparison of surface modifications with relatively strong ToF-SIMS peaks (fluorocarbon films [FC]) and to more biologically relevant surface modification of a protein (bovine serum albumin [BSA]). We demonstrate that surface modifications can be imaged in 3D showing that characteristic secondary ions associated with FC and BSA are associated with C3 F8 plasma treatment and BSA, respectively within the pore.
Collapse
Affiliation(s)
- Michael J Taylor
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| | - Daniel J Graham
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| | - Lara J Gamble
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109855. [PMID: 31500067 DOI: 10.1016/j.msec.2019.109855] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 02/04/2023]
Abstract
Identification of key components in the chemical and physical milieu for directing osteogenesis is a requirement in the investigation of tissue engineering scaffolds for advancement of bone regeneration. In this study, we engineered different gelatin-based cryogels and studied the effect of nanohydroxyapatite (nHAP) and crosslinking agents on scaffold properties and its osteogenic response towards bone marrow stem cells (BMSCs). The cryogels examined are 5% gelatin and 5% gelatin/2.5% nHAP, crosslinked either with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) or glutaraldehyde (GA). We confirmed that nHAP or the crosslinking agent has no effects on scaffold pore size and porosity. Nonetheless, incorporation of nHAP increased mechanical strength, swelling ratio and degree of crosslinking, but decreased degradation rate. Cryogels crosslinked with EDC showed faster degradation and promoted osteogenic differentiation of BMSCs while those prepared from GA crosslinking promoted proliferation of BMSCs. Furthermore, osteogenic differentiation was always enhanced in the presence of nHAP irrespective of the culture medium (normal or osteogenic) used but osteogenic medium always provide a higher extent of osteogenic differentiation. Employing gelatin/nHAP cryogel crosslinked by EDC in a bioreactor for dynamic culture of BMSCs, cyclic compressive mechanical simulation was found to be beneficial for both cell proliferation and osteogenic differentiation. However, the optimum conditions for osteogenic differentiation and cell proliferation were found at 30% and 60% strain, respectively. We thus demonstrated that osteogenic differentiation of BMSCs could be tuned by taking advantages of chemical cues generated from scaffold chemistry or physical cues generated from dynamic cell culture in vitro. Furthermore, by combining the best cryogel preparation and in vitro cell culture condition for osteogenesis, we successfully employed in vitro cultured cryogel/BMSCs constructs for repair of rabbit critical-sized cranial bone defects.
Collapse
|
21
|
Gu L, Zhang J, Li L, Du Z, Cai Q, Yang X. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. ACTA ACUST UNITED AC 2019; 14:045001. [PMID: 30939454 DOI: 10.1088/1748-605x/ab1583] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are normally not robust enough to meet the repairing requirements of bone defects, therefore, cryogels of higher mechanical properties are developed as the more proper candidates for the purpose. In view of the organic-inorganic composition of natural bone tissues, hydroxyapatite (HA) is envisioned as a good additive for protein cryogels to achieve biomimetic compositions, additionally, as an excellent reinforcement to increase the mechanical properties of cryogels. In this study, methacrylated gelatin (GelMA) was synthesized and corresponding 3D-structured cryogel was fabricated, followed by the incorporation of HA nanowires (HANWs) at different amounts as reinforcements. The results showed that the GelMA/HANW composite cryogels possessed highly porous structure with HANWs being homogeneously distributed. The compressive strengths and mechanical stability of the composite cryogels were improved alongside the increasing contents of HANWs. These composite cryogels were proven non-cytotoxic, able to support cell proliferation and promote osteogenic differentiation of bone mesenchymal stromal cells. More importantly, their porous structure allowed cell migration within the matrix, which was normally hard to be achieved in GelMA hydrogel. With improved performance, GelMA/HANW composite cryogels were thus possibly serving as a new type of bone repair materials.
Collapse
Affiliation(s)
- Lihua Gu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater 2019; 83:435-455. [PMID: 30408560 DOI: 10.1016/j.actbio.2018.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
With the increasing demand for novel bone repair solutions that overcome the drawbacks of current grafting techniques, the design of artificial bone scaffolds is a central focus in bone regeneration research. Calcium phosphate scaffolds are interesting given their compositional similarity with bone mineral. The majority of studies focus on bone growth in the macropores (>100 µm) of implanted calcium phosphate scaffolds where bone structures such as osteons and trabeculae can form. However, a growing body of research shows that micropores (<50 µm) play an important role not only in improving bone growth in the macropores, but also in providing additional space for bone growth. Bone growth in the micropores of calcium phosphate scaffolds offers major mechanical advantages as it improves the mechanical properties of the otherwise brittle materials, further stabilizes the implant, improves load transfer, and generally enhances osteointegration. In this paper, we review evidence in the literature of bone growth into micropores, emphasizing on identification techniques and conditions under which bone components are observed in the micropores. We also review theories on mineralization and propose mechanisms, mediated by cells or not, by which mineralization may occur in the confined micropore space of calcium phosphate scaffolds. Understanding and validating these mechanisms will allow to better control and enhance mineralization in micropores to improve the design and efficiency of bone implants. STATEMENT OF SIGNIFICANCE: The design of synthetic bone scaffolds remains a major focus for engineering solutions to repair damaged and diseased bone. Most studies focus on the design of and growth in macropores (>100 µm), however research increasingly shows the importance of microporosity (<50 µm). Micropores provide an additional space for bone growth, which provides multiple mechanical advantages to the scaffold/bone composite. Here, we review evidence of bone growth into micropores in calcium phosphate scaffolds and conditions under which growth occurs in micropores, and we propose mechanisms that enable or facilitate growth in these pores. Understanding these mechanisms will allow researchers to exploit them and improve the design and efficiency of bone implants.
Collapse
|
23
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 50. † Cryogels and Cryotropic Gel-Formation: Terms and Definitions. Gels 2018; 4:E77. [PMID: 30674853 PMCID: PMC6209254 DOI: 10.3390/gels4030077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
A variety of cryogenically-structured polymeric materials are of significant scientific and applied interest in various areas. However, in spite of considerable attention to these materials and intensive elaboration of their new examples, as well as the impressive growth in the number of the publications and patents on this topic over the past two decades, a marked variability of the used terminology and definitions is frequently met with in the papers, reviews, theses, patents, conference presentations, advertising materials and so forth. Therefore, the aim of this brief communication is to specify the basic terms and definitions in the particular field of macromolecular science.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| |
Collapse
|
24
|
de la Lastra AA, Hixon KR, Aryan L, Banks AN, Lin AY, Hall AF, Sell SA. Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration. J Funct Biomater 2018; 9:E46. [PMID: 30042357 PMCID: PMC6165179 DOI: 10.3390/jfb9030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
The current gold standard treatment for oral clefts is autologous bone grafting. This treatment, however, presents another wound site for the patient, greater discomfort, and pediatric patients have less bone mass for bone grafting. A potential alternative treatment is the use of tissue engineered scaffolds. Hydrogels are well characterized nanoporous scaffolds and cryogels are mechanically durable, macroporous, sponge-like scaffolds. However, there has been limited research on these scaffolds for cleft craniofacial defects. 3D-printed molds can be combined with cryogel/hydrogel fabrication to create patient-specific tissue engineered scaffolds. By combining 3D-printing technology and scaffold fabrication, we were able to create scaffolds with the geometry of three cleft craniofacial defects. The scaffolds were then characterized to assess the effect of the mold on their physical properties. While the scaffolds were able to completely fill the mold, creating the desired geometry, the overall volumes were smaller than expected. The cryogels possessed porosities ranging from 79.7% to 87.2% and high interconnectivity. Additionally, the cryogels swelled from 400% to almost 1500% of their original dry weight while the hydrogel swelling did not reach 500%, demonstrating the ability to fill a defect site. Overall, despite the complex geometry, the cryogel scaffolds displayed ideal properties for bone reconstruction.
Collapse
Affiliation(s)
| | - Katherine R Hixon
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Lavanya Aryan
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Amanda N Banks
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Alexander Y Lin
- Department of Surgery, Saint Louis University, St. Louis, MO 63104, USA.
| | - Andrew F Hall
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| |
Collapse
|