1
|
Ojo OA, Ajayi-Odoko OA, Gyebi GA, Ayokunle DI, Ogunlakin AD, Ezenabor EH, Olanrewaju AA, Agbeye OD, Ogunwale ET, Rotimi DE, Fouad D, Batiha GES, Adeyemi OS. Network Pharmacology, Molecular Dynamics and In Vitro Assessments of Indigenous Herbal Formulations for Alzheimer's Therapy. Life (Basel) 2024; 14:1222. [PMID: 39459522 PMCID: PMC11508826 DOI: 10.3390/life14101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative condition marked by amyloid plaques, synaptic dysfunction, and neuronal loss. Besides conventional medical care, herbal therapies, both raw and refined, have attracted researchers for their potential therapeutic effects. As a proof-of-concept, our study combined HPLC-DAD analysis of bioactive constituents, network pharmacology, molecular dynamics (MD), molecular docking, post-MD analysis, and experimental verification to investigate the mechanisms of crude drug formulations as a therapeutic strategy for AD. We identified nine bioactive compounds targeting 188 proteins and 1171 AD-associated genes. Using a Venn diagram, we found 47 overlapping targets, forming "herb-compound-target (HCT)" interaction networks and a protein‒protein interaction (PPI) network. Simulations analyzed binding interactions among the three core targets and their compounds. MD assessed the stability of the best-ranked poses and beneficial compounds for each protein. Among the top 22 hub genes, AChE, BChE, and MAO, ranked 10, 14, and 34, respectively, were selected for further analysis. Two tetraherbal formulations, Form A and Form B, showed notable activity against AChE. Form A exhibited significant (p < 0.0001) inhibitory activity (IC50 = 114.842 ± 2.084 µg/mL) compared to Form B (IC50 = 142.829 ± 4.258 µg/mL), though weaker than galantamine (IC50 = 27.950 ± 0.122 µg/mL). Form B had significant inhibitory effects on BChE (IC50 = 655.860 ± 32.812 µg/mL) compared to Form A (IC50 = 679.718 ± 20.656 µg/mL), but lower than galantamine (IC50 = 23.126 ± 0.683 µg/mL). Both forms protected against Fe2+-mediated brain injury by inhibiting MAO. Docking identified quercetin (-10.2 kcal/mol) and myricetin (-10.1 kcal/mol) for AChE; rutin (-10.6 kcal/mol) and quercetin (-9.7 kcal/mol) for BChE; and kaempferol (-9.1 kcal/mol) and quercetin (-8.9 kcal/mol) for MAO. These compounds were thermodynamically stable based on MD analysis. Collectively, the results offer a scientific rationale for the use of these specifically selected medicinal herbs as AD medications.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria; (A.D.O.); (E.H.E.); (O.D.A.); (O.S.A.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo 232102, Nigeria
| | | | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University, Karu 961105, Nigeria;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | | | - Akingbolabo Daniel Ogunlakin
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria; (A.D.O.); (E.H.E.); (O.D.A.); (O.S.A.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo 232102, Nigeria
| | - Emmanuel Henry Ezenabor
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria; (A.D.O.); (E.H.E.); (O.D.A.); (O.S.A.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo 232102, Nigeria
| | | | - Oluwatobi Deborah Agbeye
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria; (A.D.O.); (E.H.E.); (O.D.A.); (O.S.A.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo 232102, Nigeria
| | | | - Damilare Emmanuel Rotimi
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Nigeria
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutic, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Oluyomi Stephen Adeyemi
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria; (A.D.O.); (E.H.E.); (O.D.A.); (O.S.A.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo 232102, Nigeria
- Laboratory of Sustainable Animal Environment Systems, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Ojo OA, Gyebi GA, Ezenabor EH, Iyobhebhe M, Emmanuel DA, Adelowo OA, Olujinmi FE, Ogunwale TE, Babatunde DE, Ogunlakin AD, Ojo AB, Adeyemi OS. Exploring beetroot ( Beta vulgaris L.) for diabetes mellitus and Alzheimer's disease dual therapy: in vitro and computational studies. RSC Adv 2024; 14:19362-19380. [PMID: 38887650 PMCID: PMC11181461 DOI: 10.1039/d4ra03638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
This study explored the flavonoid-rich extract of beetroot (Beta vulgaris L.) for type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) dual therapy by using in vitro and molecular simulation studies. Flavonoid-rich extracts of B. vulgaris fruit were evaluated for their antidiabetic and anti-alzheimic activities. Molecular docking and dynamic simulation were performed to identify potential bioactive flavonoids with dual therapeutic effects on T2D and AD. Flavonoid-rich extracts of B. vulgaris fruit (IC50 = 73.062 ± 0.480 μg mL-1) had moderate activity against α-amylase compared to the standard acarbose (IC50 = 27.104 ± 0.270 μg mL-1). Compared with acarbose, flavonoid-rich extracts of B. vulgaris fruit had appreciable activity against α-glucosidase (IC50 = 17.389 ± 0.436 μg mL-1) (IC50 = 37.564 ± 0.620 μg mL-1). For AChE inhibition, flavonoid-rich extracts of B. vulgaris fruit exhibited (p < 0.0001) inhibitory activity (IC50 = 723.260 ± 5.466 μg mL-1), albeit weaker than that of the standard control, galantamine (IC50 = 27.950 ± 0.122 μg mL-1). Similarly, flavonoid-rich extracts of B. vulgaris fruit showed considerable (p < 0.0001) inhibitory effects on BChE (IC50 = 649.112 ± 0.683 μg mL-1). In contrast, galantamine (IC50 = 23.126 ± 0.683 μg mL-1) is more potent than the extracts of B. vulgaris fruit. Monoamine oxidase (MAO) activity increased in FeSO4-induced brain damage. In contrast, flavonoid-rich extracts of B. vulgaris fruit protected against Fe2+-mediated brain damage by suppressing MAO activity in a concentration-dependent manner. HPLC-DAD profiling of the extracts identified quercetrin, apigenin, rutin, myricetin, iso-quercetrin, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid. Molecular docking studies revealed quercetrin, apigenin, rutin, iso-queretrin, and myricetin were the top docked bioactive flavonoids against the five top target proteins (α-amylase, α-glucosidase AchE, BchE, and MAO). Molecular dynamic simulations revealed that the complexes formed remained stable over the course of the simulation. Collectively, the findings support the prospect of flavonoid-rich extracts of B. vulgaris root functioning as a dual therapy for T2D and AD.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University Karu Nigeria
| | | | | | | | | | | | | | | | - Akingbolabo Daniel Ogunlakin
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | | | - Oluyomi Stephen Adeyemi
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| |
Collapse
|
3
|
Lopes RP, Ferreira FL, Faria de Sousa G, Cruz Nizer WSD, Magalhães CLDB, Ferreira JMS, Tótola AH, Duarte LP, de Magalhães JC. Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria. Nat Prod Res 2024:1-10. [PMID: 38328949 DOI: 10.1080/14786419.2024.2309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3β-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3β-O-D-glucosyl-sitosterol; CC50 > 1000 μg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
4
|
Song Y, Liang Y, Zeng R, Li R, Zhou Y, Huang S, Li X, Zhang N, Xu M, Xiong K, Fu K, Ye H, Wu L, Yu S, Chen W, Tang C, Jiang M, Wang Z. Qualitative and quantitative analyses of chemical constituents in vitro and in vivo and systematic evaluation of the pharmacological effects of Tibetan medicine Zhixue Zhentong capsules. Front Pharmacol 2023; 14:1204947. [PMID: 37529700 PMCID: PMC10389267 DOI: 10.3389/fphar.2023.1204947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction: Zhixue Zhentong capsules (ZXZTCs) are a Tibetan medicine preparation solely composed of Lamiophlomis rotata (Benth.) Kudo. L. rotata is the only species of the genus Laniophlomis (family Lamiaceae) that has medicinal constituents derived from the grass or root and rhizome. L. rotata is one of the most extensively used folk medicines by Tibetan, Mongolian, Naxi, and other ethnic groups in China and has been listed as a first-class endangered Tibetan medicine. The biological effects of the plant include hemostasis, analgesia, and the removal of blood stasis and swelling. Purpose: This study aimed to profile the overall metabolites of ZXZTCs and those entering the blood. Moreover, the contents of six metabolites were measured and the hemostatic, analgesic, and anti-inflammatory effects of ZXZTCs were explored. Methods: Ultra-performance liquid chromatography-tandem quadrupole time-of-flight high-resolution mass spectrometry (UPLC-Q-TOF-MS) was employed for qualitative analysis of the metabolites of ZXZTCs and those entering the blood. Six metabolites of ZXZTCs were quantitatively determined via high-performance liquid chromatography The hemostatic, analgesic, and anti-inflammatory effects of ZXZTCs were evaluated in various animal models. Results: A total of 36 metabolites of ZXZTCs were identified, including 13 iridoid glycosides, 9 flavonoids, 9 phenylethanol glycosides, 4 phenylpropanoids, and 1 other metabolite. Overall, 11 metabolites of ZXZTCs entered the blood of normal rats. Quantitative analysis of the six main metabolites, shanzhiside methyl ester, chlorogenic acid, 8-O-acetyl shanzhiside methyl ester, forsythin B, luteoloside, and verbascoside, was extensively performed. ZXZTCs exerted hemostatic effects by reducing platelet aggregation and thrombosis and shortening bleeding time. Additionally, ZXZTCs clearly had an analgesic effect, as observed through the prolongation of the latency of writhing, reduction in writhing, and increase in the pain threshold of experimental rats. Furthermore, significant anti-inflammatory effects of ZXZTCs were observed, including a reduction in capillary permeability, the inhibition of foot swelling, and a reduction in the proliferation of granulation tissue. Conclusion: Speculative identification of the overall metabolites of ZXZTCs and those entering the blood can provide a foundation for determining its biologically active constituents. The established method is simple and reproducible and can help improve the quality control level of ZXZTCs as a medicinal product. Evaluating the hemostatic, analgesic, and anti-inflammatory activities of ZXZTCs can help reveal its mechanism.
Collapse
Affiliation(s)
- Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zeng
- Chengdu Jiuzhitang Jinding Pharmaceutical Company Limited, Chengdu, China
| | - Ran Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Zhang
- Chengdu Jiuzhitang Jinding Pharmaceutical Company Limited, Chengdu, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaipeng Xiong
- Chengdu Jiuzhitang Jinding Pharmaceutical Company Limited, Chengdu, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huixuan Ye
- Jiuzhitang Company Limited, Changsha, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaopeng Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyue Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Du H, Chen W, Lei Y, Li F, Li H, Deng W, Jiang G. Discrimination of authenticity of Fritillariae Cirrhosae Bulbus based on terahertz spectroscopy and chemometric analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
González-Félix MA, Mejía-Manzano LA, Barba-Dávila BA, Serna-Saldívar SO, González-Valdez J. Optimized and Scalable Green Extraction of Pristimerin, an Anticancerigen from Mortonia greggii, by Ethanol–Phosphate Aqueous Two-Phase Systems. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martha Alicia González-Félix
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Luis Alberto Mejía-Manzano
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Bertha A. Barba-Dávila
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|