1
|
Lee S, Lee HS, Chung JJ, Kim SH, Park JW, Lee K, Jung Y. Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. Int J Mol Sci 2021; 22:ijms22062886. [PMID: 33809175 PMCID: PMC7999751 DOI: 10.3390/ijms22062886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel–PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel–PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.
Collapse
Affiliation(s)
- Soojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Hyun Su Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Justin J. Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.L.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Korea
- Correspondence: (K.L.); (Y.J.)
| |
Collapse
|
2
|
Zhao P, Zhao W, Zhang K, Lin H, Zhang X. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J Appl Polym Sci 2020. [DOI: 10.1002/app.48515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peng Zhao
- Center for Medical Device EvaluationNational Medical Products Administration Beijing 100081 People's Republic of China
| | - Wanlu Zhao
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Kai Zhang
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610065 People's Republic of China
- Institute of Regulatory Science for Medical DeviceSichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Hai Lin
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610065 People's Republic of China
- Institute of Regulatory Science for Medical DeviceSichuan University Chengdu Sichuan 610065 People's Republic of China
| |
Collapse
|
3
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
4
|
Safety and Localization of Mesenchymal Stromal Cells Derived from Human Adipose Tissue-Associated Hyaluronic Acid: A Preclinical Study. Stem Cells Int 2020; 2020:1823427. [PMID: 32148515 PMCID: PMC7042549 DOI: 10.1155/2020/1823427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Millions of plastic surgeries are performed worldwide every year with the objective of correcting lipodystrophies stemming from lesions, tumor resections, birth defects, and AIDS-associated antiretroviral therapy. Besides that, a large number of clinical research have assessed the outcome of procedures that rely on combinations of dermal fillers and autologous cells. However, little is known about the safety of these combinations and the localization of the injected cells. The aim of this study was to test the toxicity of a solution containing 1% hyaluronic acid (HA) and adipose-derived stromal cells (ASCs) from the human adipose tissue and to assess the localization of the injected cells, with and without HA, labeled with technetium-99m. Rats received subcutaneous and intraperitoneal injections of a solution containing 1% HA/adipose-derived stromal cells isolated from the human fat tissue. The animals were then observed for up to forty-two days. The solution tested in this study did not result in systemic, biochemical, or anatomic alterations that could represent toxicity symptoms. The association of HA and ASCs labeled with technetium-99m remained at the site of the injection within a period of twenty-four hours, as demonstrated by a whole-body imaging software fusion of SPECT and CT. In conclusion, our study shows that the subcutaneous and intraperitoneal injection of HA associated with adipose-derived stromal cells (ASCs) is safe. The association of HA and ASCs did not induce local or systemic toxicity. Thus, the administration of volume equal to or less than 0.2 mL of the agent filler (1 × 106 ASC+HA 1%) should be considered for subsequent studies and may be an alternative to dermal fillers due to the expected lasting effects.
Collapse
|
5
|
Cho KH, Uthaman S, Park IK, Cho CS. Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status. Tissue Eng Regen Med 2018; 15:559-574. [PMID: 30603579 PMCID: PMC6171701 DOI: 10.1007/s13770-018-0158-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Injectable biomaterials have attracted increasing attention for volume restoration and tissue regeneration. The main aim of this review is to discuss the current status of the injectable biomaterials for correction of tissue defects in plastic and reconstructive surgery. METHODS Requirements of injectable biomaterials, mechanism of in situ gelation, characteristics, and the combinational usage of adipose-derived stem cells (ADSCs) and growth factors were reviewed. RESULTS The ideal injectable biomaterials should be biocompatible, non-toxic, easy to use, and cost-effective. Additionally, it should possess adequate mechanical properties and stability. In situ gelation method includes physical, chemical, enzymatic and photo-initiated methods. Natural and synthetic biomaterials carry their pros and cons due to their inherent properties. The combined use of ADSCs and growth factors provides enhanced potential for adipose tissue regeneration. CONCLUSIONS The usage of injectable biomaterials has been increasing for the tissue restoration and regeneration. The future of incorporating ADSCs and growth factors into the injectable biomaterials is promising.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 61469 Republic of Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Wollina U, Brzezinski P. Aesthetic dermatology: What's new, what's true? Dermatol Ther 2018; 32:e12623. [PMID: 30182495 DOI: 10.1111/dth.12623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/08/2018] [Indexed: 01/21/2023]
Abstract
Aesthetic dermatology (AD) is a rapidly growing subspecialty of dermatology. The acceptance of AD in scientific community and the society is associated with its competence, efficiency, and seriousness. This review highlights some recent developments toward new tools, techniques, and understanding in the field of AD. Analyzing the specific needs of patients and assessing the effect by objective measurements is important for further progress. For long time ignored, white adipose tissue has gained increasing interest in biology and rejuvenation. Characterization of dermal and subcutaneous white adipose tissue has made progress. The interaction of hyaluronic acid and calcium hydroxyl apatite (CaHA) fillers with adipocytes could be responsible for clinical efficacy. New developments of oral collagen treatment and highly diluted CaHA to contour the body outside the face will be discussed. Submental contouring using purified desoxycholic acid is another new development.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden, Dresden, Germany
| | - Piotr Brzezinski
- Faculty of Mathematics and Natural Sciences, Institute of Biology and Environmental Protection, Pomeranian Academy, Slupsk, Poland.,Department of Dermatology, 6th Military Support Unit, Ustka, Poland
| |
Collapse
|
7
|
Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater 2017; 63:37-49. [PMID: 28941654 DOI: 10.1016/j.actbio.2017.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/05/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic.
Collapse
|
9
|
Hong JW, Lim JH, Chung CJ, Kang TJ, Kim TY, Kim YS, Roh TS, Lew DH. Immune Tolerance of Human Dental Pulp-Derived Mesenchymal Stem Cells Mediated by CD4⁺CD25⁺FoxP3⁺ Regulatory T-Cells and Induced by TGF-β1 and IL-10. Yonsei Med J 2017; 58:1031-1039. [PMID: 28792150 PMCID: PMC5552631 DOI: 10.3349/ymj.2017.58.5.1031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Most studies on immune tolerance of mesenchymal stem cells (MSCs) have been performed using MSCs derived from bone marrow, cord blood, or adipose tissue. MSCs also exist in the craniofacial area, specifically in teeth. The purpose of this study was to evaluate the mechanisms of immune tolerance of dental pulp-derived MSC (DP-MSC) in vitro and in vivo. MATERIALS AND METHODS We isolated DP-MSCs from human dental pulp and co-cultured them with CD4⁺ T-cells. To evaluate the role of cytokines, we blocked TGF-β and IL-10, separately and together, in co-cultured DP-MSCs and CD4⁺ T-cells. We analyzed CD25 and FoxP3 to identify regulatory T-cells (Tregs) by fluorescence-activated cell sorting (FACS) and real-time PCR. We performed alloskin grafts with and without DP-MSC injection in mice. We performed mixed lymphocyte reactions (MLRs) to check immune tolerance. RESULTS Co-culture of CD4⁺ T-cells with DP-MSCs increased the number of CD4⁺CD25⁺FoxP3⁺ Tregs (p<0.01). TGF-β or/and IL-10 blocking suppressed Treg induction in co-cultured cells (p<0.05). TGF-β1 mRNA levels were higher in co-cultured DP-MSCs and in co-cultured CD4⁺ T-cells than in the respective monocultured cells. However, IL-10 mRNA levels were not different. There was no difference in alloskin graft survival rate and area between the DP-MSC injection group and the non-injection group. Nonetheless, MLR was reduced in the DP-MSC injected group (p<0.05). CONCLUSION DP-MSCs can modulate immune tolerance by increasing CD4⁺CD25⁺FoxP3⁺ Tregs. TGF-β1 and IL-10 are factors in the immune-tolerance mechanism. Pure DP-MSC therapy may not be an effective treatment for rejection, although it may module immune tolerance in vivo.
Collapse
Affiliation(s)
- Jong Won Hong
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Korea.
| | - Jung Hyun Lim
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Korea
| | - Chooryung J Chung
- Department of Orthodontics, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae Jo Kang
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Yujin Plastic Surgery, Seoul, Korea
| | - Tae Yeon Kim
- Department of Orthodontics, College of Dentistry, Yonsei University, Seoul, Korea
| | - Young Seok Kim
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Korea
| | - Tae Suk Roh
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Korea
| | - Dae Hyun Lew
- Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Korea
| |
Collapse
|
10
|
Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, Rouyer O, Ardisson O, Rutschi H, Sigaudo-Roussel D, Damour O, Mojallal A. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res Ther 2015; 6:241. [PMID: 26645735 PMCID: PMC4672563 DOI: 10.1186/s13287-015-0238-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/09/2014] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background The use of stem cells from adipose tissue or adipose-derived stem cells (ASCs) in regenerative medicine could be an interesting alternative to bone marrow stem cells because they are easily accessible and available in large quantities. The aim of this study was to evaluate the potential effect of ASCs on the healing of 12 mm diameter-excisional wounds (around 110 mm2) in nude mice. Methods Thirty nude mice underwent surgery to create one 12-mm excisional wound per mouse (spontaneous healing, n = 6; Cytocare® 532, n = 12; ASCs, n = 12). The Galiano wound model was chosen to avoid shrinkage and thus slow the spontaneous healing (SH) of mouse skin, making it closer to the physiology of human skin healing. Transparent dressings were used to enable daily healing time measurements to be taken. Immunohistochemistry, histological and blood perfusion analysis were carried out on the healed skin. Results The in vivo results showed the effectiveness of using ASCs on reducing the time needed for complete healing to 21.2 days for SH, 17.4 days for vehicle alone (Cytocare® 532) and 14.6 days with the addition of ASCs (p < 0.001). Moreover, cutaneous perfusion of the healed wound was significantly improved in ASC-treated mice compared to SH group, as shown by laser Doppler flowmetry and the quantitation of blood vessels using immunohistochemistry of αsmooth muscle actin. Conclusions The tolerance and efficacy of cryopreserved ASCs to accelerate the complete closure of the wound by increasing the maturation of the skin and its blood perfusion, shows their therapeutic benefit in the wound healing context.
Collapse
Affiliation(s)
- Jonathan Rodriguez
- Banque de tissus et cellules, Laboratoire des substituts cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5, place d'Arsonval, Pavillon i, 69437, Lyon, France. .,INSERM U1060, CarMeN laboratory, Oullins, France. .,Cell and Tissue Bank, Cutaneous Substitute Laboratory, Edouard Herriot Hospital, 5, place d'Arsonval, Pavillon I, 69437, Lyon, France.
| | - Fabien Boucher
- Service de chirurgie plastique, esthétique et reconstructrice, Hospices Civils de Lyon, University of Lyon, Lyon, France.
| | - Charlotte Lequeux
- Banque de tissus et cellules, Laboratoire des substituts cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5, place d'Arsonval, Pavillon i, 69437, Lyon, France. .,IBCP-UMR 5305 CNRS, 7 passage du Vercors, 69 367, Lyon, Cedex 07, France.
| | | | - Ondine Rouyer
- Banque de tissus et cellules, Laboratoire des substituts cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5, place d'Arsonval, Pavillon i, 69437, Lyon, France. .,IBCP-UMR 5305 CNRS, 7 passage du Vercors, 69 367, Lyon, Cedex 07, France.
| | - Orianne Ardisson
- Banque de tissus et cellules, Laboratoire des substituts cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5, place d'Arsonval, Pavillon i, 69437, Lyon, France. .,IBCP-UMR 5305 CNRS, 7 passage du Vercors, 69 367, Lyon, Cedex 07, France.
| | - Héléna Rutschi
- Laboratoire Central d'Anatomie Pathologique, Hôpital Édouard Herriot, Lyon, France.
| | | | - Odile Damour
- Banque de tissus et cellules, Laboratoire des substituts cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5, place d'Arsonval, Pavillon i, 69437, Lyon, France. .,IBCP-UMR 5305 CNRS, 7 passage du Vercors, 69 367, Lyon, Cedex 07, France.
| | - Ali Mojallal
- INSERM U1060, CarMeN laboratory, Oullins, France. .,Service de chirurgie plastique, esthétique et reconstructrice, Hospices Civils de Lyon, University of Lyon, Lyon, France.
| |
Collapse
|