1
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
3
|
Lo Y, Tsai TF. Angiotensin converting enzyme and angiotensin converting enzyme inhibitors in dermatology: a narrative review. Expert Rev Clin Pharmacol 2022; 15:33-42. [PMID: 35196189 DOI: 10.1080/17512433.2022.2045950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Angiotensin converting enzyme inhibitors (ACEI) are commonly used for cardiovascular diseases. The evidence supporting the use of ACEI in dermatology is limited. AREAS COVERED This review article was divided into three parts. The first part discusses ACEI in clinical use in dermatology. The second part reveals the relationship between angiotensin converting enzyme (ACE) and immune diseases, and further discusses the possible relationship between ACEI in clinical use in these diseases and ACE. The third part focuses on cutaneous adverse reactions of ACEI. EXPERT OPINION The use of ACEI in dermatology is mainly based on its properties as regulation of renin angiotensin system (RAS), but currently, with limited clinical use. The association of ACE and several diseases are well discussed, including COVID-19, psoriasis, sarcoidosis, systemic lupus erythematosus and vitiligo. The main cutaneous adverse effects of ACEI include angioedema, psoriasis and pemphigus. Plausible factors for these adverse reactions include accumulation of vasoactive mediators, preventing angiotension from binding to AT1 receptor and AT2 receptor and presence of circulating antibodies.
Collapse
Affiliation(s)
- Yang Lo
- Department of Dermatology, Cathay General Hospital, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Tan X, Guo S, Wang C. Propranolol in the Treatment of Infantile Hemangiomas. Clin Cosmet Investig Dermatol 2021; 14:1155-1163. [PMID: 34511960 PMCID: PMC8423716 DOI: 10.2147/ccid.s332625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Propranolol, as the first generation of β-blocker family, was initially introduced in the clinical application for tachycardia and hypertension in the 1960s. However, the occasional discovery of propranolol in the involution of infantile hemangiomas (IHs) brought us a new perspective. IHs are the most common infantile tumor, affecting 4–10% newborns. So far, oral propranolol is the first-line medication for IHs treatment. At the same time, local injection and topical propranolol are developing. Despite the worldwide application, the precise mechanism of propranolol of IHs has not been completely studied. In this article, we reviewed and summarized the current information on pharmacology, mechanism, efficacy, and adverse effects of propranolol. Novel design of biomaterials and bioactive molecules are needed for new treatment and ideal pathway to attain the minimal effective treatment concentration and eliminate the adverse effects.
Collapse
Affiliation(s)
- Xin Tan
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
5
|
Gupta A, Kureel SN, Pandey A, Singh G, Kumar A, Shandilya G, Rai RK, Gupta SK. Angiotensin-converting Enzyme Inhibitors: Can it be a Potential Treatment of Infantile Hemangioma. J Indian Assoc Pediatr Surg 2021; 26:234-239. [PMID: 34385766 PMCID: PMC8323578 DOI: 10.4103/jiaps.jiaps_112_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Aims The aim of the sudy was to evaluate potential role of oral captopril, an angiotensin-converting enzyme (ACE) inhibitor, and in treatment of infantile hemagioma (IH) and report our preliminary results. Methods This prospective study included 18 children with IH admitted in the department of pediatric surgery with no history of prior treatment of any type. Baseline blood pressure (BP), electrocardiogram, two-dimensional echocardiography, serum electrolytes, and renal function test (RFT) were noted. Oral captopril was started as first-line drug at a dose of 0.1 mg/kg orally 12 h with gradually increase of dosage up to 2.0 mg/kg 12 h over the period of 10 days with monitoring of BP, serum electrolytes, RFT, and occurrence of any side effect. If no side effects were noted and patients were stable, they were discharged and followed up until 6 months after stopping treatment. During follow-up, response to treatment was documented clinically and photographically. Development of any side effect was also noted. Results Excellent response to captopril was noticed in nine patients over 16-18 months. Four patients showed good response. Oral propranolol had to be administered alternatively in one patient showing fair response during the initial 4 months but no response afterward and in four patients showing no response at all. One patient developed an allergic reaction to propranolol and was started oral corticosteroid. These five patients had near complete resolution of lesion for the next 8-10 months. Conclusions ACE inhibitors might have a role, though slow, in the involution of IHs. Therefore, these may have the potential to emerge as an alternative treatment for IH in future after confirmation with randomized studies with propranolol.
Collapse
Affiliation(s)
- Archika Gupta
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shiv Narain Kureel
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anand Pandey
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gurmeet Singh
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Akhilesh Kumar
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gaurav Shandilya
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Kumar Rai
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Survesh Kumar Gupta
- Department of Pediatric Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Koh SP, Leadbitter P, Smithers F, Tan ST. β-blocker therapy for infantile hemangioma. Expert Rev Clin Pharmacol 2021; 13:899-915. [PMID: 32662682 DOI: 10.1080/17512433.2020.1788938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Fifteen percent of proliferating infantile hemangioma (IH) require intervention because of the threat to function or life, ulceration, or tissue distortion. Propranolol is the mainstay treatment for problematic proliferating IH. Other β-blockers and angiotensin-converting enzyme (ACE) inhibitors have been explored as alternative treatments. AREAS COVERED The demonstration of a hemogenic endothelium origin of IH, with a neural crest phenotype and multi-lineage differentiation capacity, regulated by the renin-angiotensin system, underscores its programmed biologic behavior and accelerated involution induced by propranolol, other β-blockers and ACE inhibitors. We review the indications, dosing regimens, duration of treatment, efficacy and adverse effects of propranolol, and therapeutic alternatives including oral atenolol, acebutolol, nadolol, intralesional propranolol injections, topical propranolol and timolol, and oral captopril. EXPERT OPINION Improved understanding of the biology of IH provides insights into the mechanism of action underscoring its accelerated involution induced by propranolol, other β-blockers and ACE inhibitors. More research is required to understand the optimal dosing and duration, efficacy and safety of these alternative therapies. Recent demonstration of propranolol's actions mediated by non-β-adrenergic isomer R-propranolol on stem cells, offers an immense opportunity to harness the efficacy of β-blockers to induce accelerated involution of IH, while mitigating their β-adrenergic receptor-mediated adverse effects.
Collapse
Affiliation(s)
- Sabrina P Koh
- Gillies McIndoe Research Institute , Wellington, New Zealand
| | - Philip Leadbitter
- Gillies McIndoe Research Institute , Wellington, New Zealand.,Centre for the Study & Treatment for Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital , Wellington, New Zealand.,Department of Paediatrics, Hutt Hospital , Wellington, New Zealand
| | - Fiona Smithers
- Centre for the Study & Treatment for Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital , Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute , Wellington, New Zealand.,Centre for the Study & Treatment for Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital , Wellington, New Zealand.,Department of Surgery, The University of Melbourne , Parkville, Victoria, Australia
| |
Collapse
|
8
|
Chen ZY, Wang QN, Zhu YH, Zhou LY, Xu T, He ZY, Yang Y. Progress in the treatment of infantile hemangioma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:692. [PMID: 31930093 PMCID: PMC6944559 DOI: 10.21037/atm.2019.10.47] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 02/05/2023]
Abstract
Infantile hemangioma (IH) is a common benign tumor, which mostly resolves spontaneously; however, children with high-risk IH need treatment. Currently, the recognized first-line treatment regimen for IH is oral propranolol, but research on the pathogenesis of IH has led to the identification of new therapeutic targets, which have shown good curative effects, providing more options for disease treatment. This article summarizes the applications of different medications, dosages, and routes of administration for the treatment of IH. In addition to drug therapy, this article also reviews current therapeutic options for IH such as laser therapy, surgical treatment, and observation. To provide the best treatment, therapeutic regimens for IH should be selected based on the child's age, the size and location of the lesion, the presence of complications, the implementation conditions, and the potential outcomes of the treatment.
Collapse
Affiliation(s)
- Zhao-Yang Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qing-Nan Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yang Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
9
|
Satterfield KR, Chambers CB. Current treatment and management of infantile hemangiomas. Surv Ophthalmol 2019; 64:608-618. [PMID: 30772366 DOI: 10.1016/j.survophthal.2019.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
Infantile hemangiomas, otherwise known as infantile capillary hemangiomas, strawberry hemangiomas, or strawberry nevi, are nonmalignant vascular tumors that commonly affect children. The natural disease course typically involves growth for up to a year, followed by regression without treatment over a period of years with no cosmetic or functional sequelae. Less commonly, however, infantile hemangiomas can become a threat to vision or even life depending on location and size of the lesion. In addition, infantile hemangiomas, particularly those involving the face, may be disfiguring and result in lifelong sequelae. β-blockers have become a mainstay of therapy given their relatively low-risk profile and efficacy. Other treatment modalities previously described in the literature include corticosteroids (both intralesional and systemic), imiquimod, vincristine, bleomycin A5, and interferon α. More recently, angiotensin-converting enzyme inhibitors such as captopril have been used. Laser therapy and, less commonly, surgical excision are also available treatment options. We review current recommended management and treatment of capillary hemangiomas and discuss the benefits and risks of all previously reported treatment modalities.
Collapse
Affiliation(s)
- Kellie R Satterfield
- Department of Medicine, Scripps Mercy Hospital, San Diego, California, USA; Department of Ophthalmology, University of Washington, Seattle, Washington DC, USA
| | - Christopher B Chambers
- Department of Ophthalmology, University of Washington, Seattle, Washington DC, USA; Department of Oculoplastic and Reconstructive Surgery, University of Washington, Seattle, Washington DC, USA.
| |
Collapse
|
10
|
Efficacy of aliskiren supplementation for heart failure : A meta-analysis of randomized controlled trials. Herz 2018; 44:398-404. [PMID: 29470612 DOI: 10.1007/s00059-018-4679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aliskiren might be beneficial for heart failure. However, the results of various studies are controversial. We conducted a systematic review and meta-analysis to explore the efficacy of aliskiren supplementation for heart failure. METHODS PubMed, Embase, Web of Science, EBSCO, and the Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) assessing the efficacy of aliskiren for heart failure were included. Two investigators independently searched for articles, extracted data, and assessed the quality of included studies. The meta-analysis was performed using the random-effect model. RESULTS Five RCTs comprising 1973 patients were included in the meta-analysis. Compared with control interventions in heart failure, aliskiren supplementation was found to significantly reduce NT-proBNP levels (standardized mean difference [SMD] = -0.12; 95% CI = -0.21 to -0.03 pg/ml; p = 0.008) and plasma renin activity (SMD = -0.66; 95% CI = -0.89 to -0.44 ng/ml.h; p < 0.00001) while increasing plasma renin concentration (SMD = 0.52; 95% CI = 0.30-0.75 ng/l; p < 0.00001); however, it demonstrated no significant influence on BNP levels (SMD = -0.08; 95% CI = -0.31-0.15 pg/ml; p = 0.49), mortality (RR = 0.97; 95% CI = 0.79-1.20; p = 0.79), aldosterone levels (SMD = -0.09; 95% CI = -0.32-0.14 pmol/l; p = 0.44), adverse events (RR = 3.03; 95% CI = 0.18-49.51; p = 0.44), and serious adverse events (RR = 1.34; 95% CI = 0.54-3.33; p = 0.53). CONCLUSION Aliskiren supplementation was found to significantly decrease NT-proBNP levels and plasma renin activity and to improve plasma renin concentration in the setting of heart failure.
Collapse
|
11
|
Lezama-Martínez D, Valencia-Hernández I, Flores-Monroy J, Martínez-Aguilar L. Combination of β Adrenergic Receptor Block and Renin-Angiotensin System Inhibition Diminished the Angiotensin II-Induced Vasoconstriction and Increased Bradykinin-Induced Vasodilation in Hypertension. Dose Response 2017; 15:1559325817737932. [PMID: 29162996 PMCID: PMC5686879 DOI: 10.1177/1559325817737932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023] Open
Abstract
In hypertension, the combination therapy is frequently used to obtain a better therapeutic effect and reduce adverse effects. One effective combination is with inhibitors and β-blockers of renin–angiotensin system. Although the mechanisms of action of each drug are already known, the antihypertensive mechanism is more complex and therefore the combined treatment mechanism is unclear. Specifically, the effect of the treatments of angiotensin-converting enzyme inhibitor or AT1 receptor antagonist with β-blocker on the angiotensin II and bradykinin reactivity has not been studied. For this reason, we evaluated the interaction between propranolol and captopril or losartan on vascular reactivity to bradykinin and angiotensin II in spontaneously hypertensive rat. We constructed concentration–response curves to angiotensin II and bradykinin after treatment of SHR with propranolol–captopril or propranolol–losartan by using rat aortic rings. While losartan or captopril with propranolol potentiated bradykinin-induced vasodilation effect, the propranolol–losartan interaction decreased the angiotensin II-induced vasoconstriction. In addition, the combinations did not reduce the heart rate significantly. These results suggest that the combined therapy decreased blood pressure to normotensive values and showed less effect for angiotensin II and greater effect for bradykinin than monotherapy which could contribute in the antihypertensive effect.
Collapse
Affiliation(s)
- Diego Lezama-Martínez
- Laboratory of Pharmacology, FES Cuautitlan, Universidad Nacional Autónoma de México, Cuautitlan Izcalli, Mexico, Mexico.,Laboratory of Pharmacodynamics, Escuela Superior de Medicina, Instituto Politécnico Nacional, DF, Mexico, Mexico
| | - Ignacio Valencia-Hernández
- Laboratory of Pharmacodynamics, Escuela Superior de Medicina, Instituto Politécnico Nacional, DF, Mexico, Mexico
| | - Jazmin Flores-Monroy
- Laboratory of Pharmacology, FES Cuautitlan, Universidad Nacional Autónoma de México, Cuautitlan Izcalli, Mexico, Mexico
| | - Luisa Martínez-Aguilar
- Laboratory of Pharmacology, FES Cuautitlan, Universidad Nacional Autónoma de México, Cuautitlan Izcalli, Mexico, Mexico
| |
Collapse
|
12
|
The expression of renin-angiotensin-aldosterone axis components in infantile hemangioma tissue and the impact of propranolol treatment. Pediatr Res 2017; 82:155-163. [PMID: 28376078 DOI: 10.1038/pr.2017.93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
BackgroundPropranolol's mechanism of action for controlling infantile hemangioma (IH) remains unclear. We hypothesize that this nonselective beta antagonist downregulates renin-angiotensin-aldosterone (RAA) axis components, preventing angiogenic substrate induction of IH.MethodsIH tissue and serum were collected from children with propranolol-treated or -untreated IH during surgery. Normal skin and serum from demographically matched children were used as controls. Real-time PCR and western blot quantified RAA components in proliferative (n=10), involuting (n=10), propranolol-treated (n=12) IH, and normal specimens (n=11). Serum was analyzed by enzyme-linked immunosorbent assay (ELISA).ResultsThere were significantly greater messenger RNA (mRNA) levels of angiotensinogen (AGT) in proliferating IH, but not in involuting or treated IH, when compared with controls (P<0.05). Angiotensin-converting enzyme (ACE) and angiotensin II receptor 1 (AGTR1) mRNA expression was higher in all IH specimens when comparedwith controls (P<0.05). ACE and AGTR1 protein expression was greater in proliferating IH tissue compared with that in controls and in involuting and treated IH tissue (P<0.05). ELISA showed no significant difference in ACE serum levels but did show a significant reduction in renin in involuting compared with proliferating IH (P<0.05).ConclusionsThe protein and mRNA expression of several RAA pathway constituents is elevated in IH tissue when compared with that in normal tissue. The action of propranolol on IH may be the result of reductions in ACE and AGTR1.
Collapse
|