1
|
Eravsar E, Özdemir A, Cüce G, Acar MA. The Impact of the Number of Sutures on Regeneration in Nerve Repair. Ann Plast Surg 2024; 92:313-319. [PMID: 38170975 DOI: 10.1097/sap.0000000000003700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE The ideal number of sutures for epineural nerve repair is still unclear. Increased number of sutures increases secondary damage and inflammation to the nerve tissue, which negatively affects nerve regeneration. When the number of sutures decreases, the strength of the nerve repair site decreases and nerve endings are fringed, which also negatively affects nerve regeneration. Therefore, each additional suture is not only beneficial but also detrimental. The aim of this study was to find out the ideal number of sutures for nerve repair. METHODS Seventy rats were randomly divided into 5 groups. One of the groups was used as a control group, and right sciatic nerves of the rats in other 4 groups were repaired by using 2, 3, 4, or 6 epineural sutures, respectively, after nerve transection. Biomechanical assessment was performed on the nerves collected from these rats at 5 days of follow-up. Functional and histological analyses were evaluated after 12 weeks of follow-up. RESULTS It was found that an increase in the number of sutures enhances resistance to tensile force in general. However, there was no significant biomechanical difference between the 6-sutured group in which the most sutures were used and the 4-sutured group. In functional examinations, overall successful results were obtained in the group with 4 sutures. In histological examinations, there was no statistical difference between the control group, 2-sutured groups, and 4-sutured groups in terms of connective tissue index. However, it was observed that the group with 6 sutures had a higher connective tissue index than the control group and groups with 2 and 4 sutures. In terms of regeneration index, it was found that repair with 4 sutures was superior to repair with 2 and 6 sutures. No difference was found between any of the suture groups according to the diameter change index. CONCLUSIONS These results indicate that repair with 4 sutures is the best method of epineural repair that provides both strength and regeneration. These findings will contribute to both the repair of clinically similar nerves and the standardization of rat nerve studies.
Collapse
Affiliation(s)
- Ebubekir Eravsar
- From the Department of Orthopedics and Traumatology, Konya City Hospital, Konya, Turkey
| | - Ali Özdemir
- Department of Orthopedics, Traumatology and Hand Surgery, Selcuk University, Konya, Turkey
| | - Gökhan Cüce
- Department of Histology and Embryology, Necmettin Erbakan University, Konya, Turkey
| | | |
Collapse
|
2
|
Acharya N, Acharya AM, Bhat AK, Upadhya D, Punja D, Suhani S. The outcome of polyethylene glycol fusion augmented by electrical stimulation in a delayed setting of nerve repair following neurotmesis in a rat model. Acta Neurochir (Wien) 2023; 165:3993-4002. [PMID: 37907766 PMCID: PMC10739326 DOI: 10.1007/s00701-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Polyethylene glycol is known to improve recovery following its use in repair of acute peripheral nerve injury. The duration till which PEG works remains a subject of intense research. We studied the effect of PEG with augmentation of 20Htz of electrical stimulation (ES) following neurorrhaphy at 48 h in a rodent sciatic nerve neurotmesis model. METHOD Twenty-four Sprague Dawley rats were divided into 4 groups. In group I, the sciatic nerve was transected and repaired immediately. In group II, PEG fusion was done additionally after acute repair. In group III, repair and PEG fusion were done at 48 h. In group IV, ES of 20Htz at 2 mA for 1 h was added to the steps followed for group III. Weekly assessment of sciatic functional index (SFI), pinprick, and cold allodynia tests were done at 3 weeks and euthanized. Sciatic nerve axonal count and muscle weight were done. RESULTS Groups II, III, and IV showed significantly better recovery of SFI (II: 70.10 ± 1.24/III: 84.00 ± 2.59/IV: 74.40 ± 1.71 vs I: 90.00 ± 1.38) (p < 0.001) and axonal counts (II: 4040 ± 270/III: 2121 ± 450/IV:2380 ± 158 vs I: 1024 ± 094) (p < 0.001) at 3 weeks. The experimental groups showed earlier recovery of sensation in comparison to the controls as demonstrated by pinprick and cold allodynia tests and improved muscle weights. Addition of electrical stimulation helped in better score with SFI (III: 84.00 ± 2.59 vs IV: 74.40 ± 1.71) (p < 0.001) and muscle weight (plantar flexors) (III: 0.49 ± 0.02 vs IV: 0.55 ± 0.01) (p < 0.001) in delayed repair and PEG fusions. CONCLUSION This study shows that PEG fusion of peripheral nerve repair in augmentation with ES results in better outcomes, and this benefit can be demonstrated up to a window period of 48 h after injury.
Collapse
Affiliation(s)
- Nanda Acharya
- Department of Physiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - A M Acharya
- Department of Hand Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Anil K Bhat
- Department of Hand Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Dhiren Punja
- Department of Physiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sumalatha Suhani
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| |
Collapse
|
3
|
Siwei Q, Ma N, Wang W, Chen S, Wu Q, Li Y, Yang Z. Construction and effect evaluation of different sciatic nerve injury models in rats. Transl Neurosci 2022; 13:38-51. [PMID: 35350657 PMCID: PMC8919826 DOI: 10.1515/tnsci-2022-0214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Background The most commonly used experimental model for preclinical studies on peripheral nerve regeneration is the sciatic nerve injury model. However, no experimental study has been conducted to evaluate acute injury modes at the same time. Objective We conducted sciatic nerve transverse injury, clamp injury, keep epineurium and axon cutting injury, and chemical damage injury in rats to evaluate the degree of damage of the four different injury modes and the degree of self-repair after injury. Methods The sciatic nerve transverse injury model, clamp injury model, keep epineurium injury model, and chemical damage injury model were constructed. Then, the sciatic nerve function was assessed using clinical evaluation methods and electrophysiological examinations, as well as immunofluorescence and axonal counting assessments of the reconstructed nerve pathways. Results The evaluations showed that the transverse group had the lowest muscle action potential, sciatic functional index, nociceptive threshold, mechanical threshold, rate of wet gastrocnemius muscle weight, area of muscle fiber, and numbers of myelinated nerve fibers. The chemical group had the highest, while the clamp group and the keep epineurium group had medium. Conclusion Transverse injury models have the most stable effect among all damage models; chemical injury models self-recover quickly and damage incompletely with poor stability of effect; and clamp injury models and keep epineurium injury models have no significant differences in many ways with medium stability.
Collapse
Affiliation(s)
- Qu Siwei
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Ning Ma
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Weixin Wang
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Sen Chen
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Qi Wu
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Yangqun Li
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Zhe Yang
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| |
Collapse
|
4
|
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study. Int J Mol Sci 2021; 22:ijms22115588. [PMID: 34070436 PMCID: PMC8197537 DOI: 10.3390/ijms22115588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.
Collapse
|
5
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|