1
|
Sheng G, Tao J, Jin P, Li Y, Jin W, Wang K. The Proteasome-Family-Members-Based Prognostic Model Improves the Risk Classification for Adult Acute Myeloid Leukemia. Biomedicines 2024; 12:2147. [PMID: 39335660 PMCID: PMC11429122 DOI: 10.3390/biomedicines12092147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The accumulation of diverse molecular and cytogenetic variations contributes to the heterogeneity of acute myeloid leukemia (AML), a cluster of hematologic malignancies that necessitates enhanced risk evaluation for prognostic prediction and therapeutic guidance. The ubiquitin-proteasome system plays a crucial role in AML; however, the specific contributions of 49 core proteasome family members (PSMs) in this context remain largely unexplored. Methods: The expression and survival significance of 49 PSMs in AML were evaluated using the data from BeatAML2.0, TCGA, and the GEO database, mainly through the K-M plots, differential genes enrichment analysis, and candidate compounds screening via R language and statistical software. Results: we employed LASSO and Cox regression analyses and developed a model comprising three PSMs (PSMB8, PSMG1, and PSMG4) aimed at predicting OS in adult AML patients, utilizing expression profiles from the BeatAML2.0 training datasets. Patients with higher risk scores were predominantly found in the AML-M2 subtype, exhibited poorer ELN stratification, showed no complete remission following induction therapies, and had a higher mortality status. Consistently, significantly worse OS was observed in high-risk patients across both the training and three validation datasets, underscoring the robust predictive capability of the three-PSMs model for AML outcomes. This model elucidated the distinct genetic abnormalities landscape between high- and low-risk groups and enhanced the ELN risk stratification system. Ultimately, the three-PSMs risk score captured AML-specific gene expression signatures, providing a molecular basis for selecting potential therapeutic agents. Conclusions: In summary, these findings manifested the significant potential of the PSM model for predicting AML survival and informed treatment strategies.
Collapse
Affiliation(s)
- Guangying Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Jingfen Tao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Yilu Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
3
|
Li X, Li W, Zhang Y, Xu L, Song Y. Exploiting the potential of the ubiquitin-proteasome system in overcoming tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Genes Dis 2024; 11:101150. [PMID: 38947742 PMCID: PMC11214299 DOI: 10.1016/j.gendis.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 07/02/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Linping Xu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
4
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Agwan S, Zhang LY, Baker T, Lane M, Godbolt D, Mackintosh JA. A vexing case of a 73-year-old man with fevers, orbital cellulitis, and asymptomatic interstitial lung disease. Respirol Case Rep 2024; 12:e70020. [PMID: 39253323 PMCID: PMC11381310 DOI: 10.1002/rcr2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome is a rare and recently identified disease resulting from a somatic mutation in the X-linked UBA1 gene in cells of myeloid lineage. It can present in a myriad of ways with the potential to affect various organ systems, including the lungs. VEXAS is usually steroid responsive, but no strong data exists for the use of a steroid-sparing agent. There is limited emerging evidence for haematopoietic stem cell transplantation in a select number of cases. Regardless, prognosis for this condition is poor and a treatment algorithm remains a priority. Herein, we present a case of VEXAS that came to attention with discovery of a relatively asymptomatic interstitial lung disease and led to recurrent febrile episodes with evolving multi-organ involvement.
Collapse
Affiliation(s)
- Sushil Agwan
- Department of Thoracic Medicine The Prince Charles Hospital Chermside Queensland Australia
| | - Lai-Ying Zhang
- Department of Thoracic Medicine The Prince Charles Hospital Chermside Queensland Australia
| | - Thomas Baker
- Department of Thoracic Medicine The Prince Charles Hospital Chermside Queensland Australia
| | - Michael Lane
- Faculty of Medicine The University of Queensland Herston Queensland Australia
- Department of Clinical Immunology and Allergy Royal Brisbane and Women's Hospital Herston Queensland Australia
| | - David Godbolt
- Anatomical Pathology The Prince Charles Hospital Chermside Queensland Australia
| | - John A Mackintosh
- Department of Thoracic Medicine The Prince Charles Hospital Chermside Queensland Australia
- Faculty of Medicine The University of Queensland Herston Queensland Australia
| |
Collapse
|
6
|
Frumm SM, Shimony S, Stone RM, DeAngelo DJ, Bewersdorf JP, Zeidan AM, Stahl M. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev 2023; 60:101056. [PMID: 36805300 DOI: 10.1016/j.blre.2023.101056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Approval of new agents to treat higher risk (HR) myelodysplastic syndrome (MDS) has stalled since the approval of DNA methyltransferase inhibitors (DNMTi). In addition, the options for patients with lower risk (LR) MDS who have high transfusion needs and do not harbor ring sideroblasts or 5q- syndrome are limited. Here, we review the current treatment landscape in MDS and identify areas of unmet need, such as treatment after failure of erythropoiesis-stimulating agents or DNMTis, TP53-mutated disease, and MDS with potentially targetable mutations. We discuss how our understanding of MDS pathogenesis can inform therapy development, including treating HR-MDS similarly to AML and pursuing therapies to address splicing factor mutations and dysregulated inflammation. We then bring a critical lens to current methodology of MDS studies and propose solutions to improve the efficiency and yield of these clinical trials, including using the most meaningful response metrics and expanding enrollment.
Collapse
Affiliation(s)
- Stacey M Frumm
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Israel
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jan Phillipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Tatar I, Uysal S, Yilmaz S, Tarikogullari AH, Ballar Kirmizibayrak P, Soyer Z. Design, synthesis, and biological evaluation of some novel naphthoquinone-glycine/β-alanine anilide derivatives as noncovalent proteasome inhibitors. Chem Biol Drug Des 2023; 101:1283-1298. [PMID: 36762979 DOI: 10.1111/cbdd.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A series of novel noncovalent glycine/β-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50 = 7.10 ± 0.10-41.08 ± 0.14 μM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (β1, β2, and β5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the β5 subunit compared with β1 and β2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 μM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of β5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 μM. This compound showed an IC50 value of 32.30 ± 0.45 μM against β5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with β5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.
Collapse
Affiliation(s)
- Irem Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Turkey.,Department of Bioengineering, Faculty of Engineering, University of Alanya Alaaddin Keykubat, Antalya, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
8
|
Fuchs O. Targeting cereblon in hematologic malignancies. Blood Rev 2023; 57:100994. [PMID: 35933246 DOI: 10.1016/j.blre.2022.100994] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN. Targeting CRBN mediates selective protein ubiquitination and subsequent degradation via the proteasome. This review describes novel thalidomide analogs, immunomodulatory drugs, also known as CRBN E3 ubiquitin ligase modulators or molecular glues (avadomide, iberdomide, CC-885, CC-90009, BTX-1188, CC-92480, CC-99282, CFT7455, and CC-91633), and CRBN-based proteolysis targeting chimeras (PROTACs) with increased efficacy and potent activity for application in hematologic malignancies. Both types of CRBN-binding drugs, molecular glues, and PROTACs stimulate the interaction between CRBN and its neosubstrates, recruiting target disease-promoting proteins and the E3 ubiquitin ligase CRL4CRBN. Proteins that are traditionally difficult to target (transcription factors and oncoproteins) can be polyubiquitinated and degraded in this way. The competition of CRBN neosubstrates with endogenous CRBN-interacting proteins and the pharmacology and rational combination therapies of and mechanisms of resistance to CRL4CRBN modulators or CRBN-based PROTACs are described.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12800 Praha 2, Czech Republic.
| |
Collapse
|
9
|
Ghosh S, Cho SJ. Comparative binding affinity analysis of dual
CDK2
/
FLT3
inhibitors. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences College of Medicine, Chosun University Gwangju Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences College of Medicine, Chosun University Gwangju Republic of Korea
- Department of Cellular Molecular Medicine College of Medicine, Chosun University Gwangju Republic of Korea
| |
Collapse
|