1
|
Wang D, Chen X, Guo X, Zhu X, Liu X. Convenient synthesis of 8‐aryl‐6‐aryl‐1,2,3,4‐tetrahydroisoquinoline‐5,7‐dicarbonitriles via a cascade Michael/cyclization reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dao‐Cai Wang
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xi‐Xia Chen
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xiao‐Qian Guo
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xi‐Qiang Zhu
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xiao‐Peng Liu
- School of Biological Science and Technology Hubei Minzu University Enshi China
| |
Collapse
|
2
|
Avila-Montiel C, Tapia-Benavides AR, Falcón-León M, Ariza-Castolo A, Tlahuext H, Tlahuextl M. Synthesis and structural studies of amino amide salts derived from 2-(aminomethyl)benzimidazole and α-amino acids. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Furukawa S, Fukuyama T, Matsui A, Kuratsu M, Nakaya R, Ineyama T, Ueda H, Ryu I. Coupling-Reagent-Free Synthesis of Dipeptides and Tripeptides Using Amino Acid Ionic Liquids. Chemistry 2015. [DOI: 10.1002/chem.201501783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Vezzi V, Onaran HO, Molinari P, Guerrini R, Balboni G, Calò G, Costa T. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors. J Biol Chem 2013; 288:23964-78. [PMID: 23836900 DOI: 10.1074/jbc.m113.474452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.
Collapse
Affiliation(s)
- Vanessa Vezzi
- Department of Pharmacology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Balboni G, Salvadori S, Marczak ED, Knapp BI, Bidlack JM, Lazarus LH, Peng X, Si YG, Neumeyer JL. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic. Eur J Med Chem 2010; 46:799-803. [PMID: 21216504 DOI: 10.1016/j.ejmech.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/28/2010] [Accepted: 12/01/2010] [Indexed: 01/31/2023]
Abstract
Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, Via Ospedale 72, I-09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Towards chiral diamines as chiral catalytic precursors for the borane-mediated enantioselective reduction of prochiral ketones. J CHEM SCI 2009. [DOI: 10.1007/s12039-009-0112-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cho SJ, Jensen NH, Kurome T, Kadari S, Manzano ML, Malberg JE, Caldarone B, Roth BL, Kozikowski AP. Selective 5-hydroxytryptamine 2C receptor agonists derived from the lead compound tranylcypromine: identification of drugs with antidepressant-like action. J Med Chem 2009; 52:1885-902. [PMID: 19284718 DOI: 10.1021/jm801354e] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT(2C) agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT(2C) agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT(2C) receptor agonists with selectivity over both 5-HT(2A) and 5-HT(2B) receptors in functional assays. The most promising compound is 37, with 120- and 14-fold selectivity over 5-HT(2A) and 5-HT(2B), respectively (EC(50) = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10-60 mg/kg) decreased immobility time in the mouse forced swim test.
Collapse
Affiliation(s)
- Sung Jin Cho
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612-7230, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li T, Shiotani K, Miyazaki A, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Lazarus LH, Okada Y. Bifunctional [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues substituted at position 3 with alkylated phenylalanine derivatives yield potent mixed mu-agonist/delta-antagonist and dual mu-agonist/delta-agonist opioid ligands. J Med Chem 2007; 50:2753-66. [PMID: 17497839 PMCID: PMC2669435 DOI: 10.1021/jm061238m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) and [Dmt1]EM-2 (Dmt = 2',6'-dimethyl-l-tyrosine) analogues, containing alkylated Phe3 derivatives, 2'-monomethyl (2, 2'), 3',5'- and 2',6'-dimethyl (3, 3', and 4', respectively), 2',4',6'-trimethyl (6, 6'), 2'-ethyl-6'-methyl (7, 7'), and 2'-isopropyl-6'-methyl (8, 8') groups or Dmt (5, 5'), had the following characteristics: (i) [Xaa3]EM-2 analogues exhibited improved mu- and delta-opioid receptor affinities. The latter, however, were inconsequential (Kidelta = 491-3451 nM). (ii) [Dmt1,Xaa3]EM-2 analogues enhanced mu- and delta-opioid receptor affinities (Kimu = 0.069-0.32 nM; Kidelta = 1.83-99.8 nM) without kappa-opioid receptor interaction. (iii) There were elevated mu-bioactivity (IC50 = 0.12-14.4 nM) and abolished delta-agonism (IC50 > 10 muM in 2', 3', 4', 5', 6'), although 4' and 6' demonstrated a potent mixed mu-agonism/delta-antagonism (for 4', IC50mu = 0.12 and pA2 = 8.15; for 6', IC50mu = 0.21 nM and pA2 = 9.05) and 7' was a dual mu-agonist/delta-agonist (IC50mu = 0.17 nM; IC50delta = 0.51 nM).
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Guinea Pigs
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/physiology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Structure-Activity Relationship
- Synaptosomes/metabolism
- Tyrosine/analogs & derivatives
- Tyrosine/chemical synthesis
- Tyrosine/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Kimitaka Shiotani
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Anna Miyazaki
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Yuko Tsuda
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Akihiro Ambo
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yusuke Sasaki
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Ewa Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Sharon D. Bryant
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| | - Yoshio Okada
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| |
Collapse
|
10
|
Balboni G, Onnis V, Congiu C, Zotti M, Sasaki Y, Ambo A, Bryant SD, Jinsmaa Y, Lazarus LH, Trapella C, Salvadori S. Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore. J Med Chem 2006; 49:5610-7. [PMID: 16942034 PMCID: PMC2533050 DOI: 10.1021/jm060741w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.
Collapse
MESH Headings
- Animals
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Electric Stimulation
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Structure-Activity Relationship
- Tetrahydroisoquinolines/chemical synthesis
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tourwé D, Salvadori S, Bryant SD, Jinsmaa Y, Lazarus LH, Negri L, Giannini E, Lattanzi R, Balboni G. New 2',6'-dimethyl-L-tyrosine (Dmt) opioid peptidomimetics based on the Aba-Gly scaffold. Development of unique mu-opioid receptor ligands. J Med Chem 2006; 49:3990-3. [PMID: 16789756 PMCID: PMC2983084 DOI: 10.1021/jm0603264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Aba-Gly scaffold, incorporated into Dmt-Tic ligands (H-Dmt-Tic-Gly-NH-CH2-Ph, H-Dmt-Tic-Gly-NH-Ph, H-Dmt-Tic-NH-CH2-Bid), exhibited mixed micro/delta or delta opioid receptor activities with micro agonism. Substitution of Tic by Aba-Gly coupled to -NH-CH2-Ph (1), -NH-Ph (2), or -Bid (Bid=1H-benzimidazole-2-yl) (3) shifted affinity (Ki(micro)=0.46, 1.48, and 19.9 nM, respectively), selectivity, and bioactivity to micro-opioid receptors. These compounds represent templates for a new class of lead opioid agonists that are easily synthesized and suitable for therapeutic pain relief.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Benzazepines/chemical synthesis
- Benzazepines/pharmacology
- Glycine/analogs & derivatives
- Glycine/chemical synthesis
- Glycine/pharmacology
- Guinea Pigs
- In Vitro Techniques
- Ligands
- Molecular Mimicry
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/physiology
- Peptides/chemistry
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Structure-Activity Relationship
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Dirk Tourwé
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Sharon D. Bryant
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lucia Negri
- Department of Human Physiology and Pharmacology “Vittorio Erspamer,” University La Sapienza, I-00185 Rome, Italy
| | - Elisa Giannini
- Department of Human Physiology and Pharmacology “Vittorio Erspamer,” University La Sapienza, I-00185 Rome, Italy
| | - Roberta Lattanzi
- Department of Human Physiology and Pharmacology “Vittorio Erspamer,” University La Sapienza, I-00185 Rome, Italy
| | - Gianfranco Balboni
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy
- To whom Correspondence should be addressed. Tel.: +39-532-291-275; Fax: +39-532-291-296; E-mail: ;
| |
Collapse
|
12
|
Vázquez ME, Blanco JB, Salvadori S, Trapella C, Argazzi R, Bryant SD, Jinsmaa Y, Lazarus LH, Negri L, Giannini E, Lattanzi R, Colucci M, Balboni G. 6-N,N-dimethylamino-2,3-naphthalimide: a new environment-sensitive fluorescent probe in delta- and mu-selective opioid peptides. J Med Chem 2006; 49:3653-8. [PMID: 16759107 PMCID: PMC1994907 DOI: 10.1021/jm060343t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new environment-sensitive fluorophore, 6-N,N-(dimethylamino)-2,3-naphthalimide (6DMN) was introduced in the delta-selective opioid peptide agonist H-Dmt-Tic-Glu-NH(2) and in the mu-selective opioid peptide agonist endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH(2)). Environment-sensitive fluorophores are a special class of chromophores that generally exhibit a low quantum yield in aqueous solution but become highly fluorescent in nonpolar solvents or when bound to hydrophobic sites in proteins or membranes. New fluorescent delta-selective irreversible antagonists (H-Dmt-Tic-Glu-NH-(CH(2))(5)-CO-Dap(6DMN)-NH(2) (1) and H-Dmt-Tic-Glu-Dap(6DMN)-NH(2) (2)) were identified as potential fluorescent probes showing good properties for use in studies of distribution and internalization of delta receptors by confocal laser scanning microscopy.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line, Tumor
- Fluorescent Dyes/chemical synthesis
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/pharmacology
- Guinea Pigs
- Imides/chemistry
- In Vitro Techniques
- Male
- Mice
- Muscle Contraction
- Naphthalenes/chemistry
- Naphthalimides
- Neuroblastoma
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Opioid Peptides/chemical synthesis
- Opioid Peptides/chemistry
- Opioid Peptides/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- M Eugenio Vázquez
- Departamento de Química Organica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li T, Fujita Y, Shiotani K, Miyazaki A, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Salvadori S, Lazarus LH, Okada Y. Potent Dmt-Tic Pharmacophoric δ- and μ-Opioid Receptor Antagonists. J Med Chem 2005; 48:8035-44. [PMID: 16335927 DOI: 10.1021/jm050377l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Diamines/chemical synthesis
- Diamines/chemistry
- Diamines/pharmacology
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Pyrazines/chemical synthesis
- Pyrazines/chemistry
- Pyrazines/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Structure-Activity Relationship
- Tetrahydroisoquinolines/chemical synthesis
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences and Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Balboni G, Cocco MT, Salvadori S, Romagnoli R, Sasaki Y, Okada Y, Bryant SD, Jinsmaa Y, Lazarus LH. From the potent and selective mu opioid receptor agonist H-Dmt-d-Arg-Phe-Lys-NH(2) to the potent delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. J Med Chem 2005; 48:5608-11. [PMID: 16107162 DOI: 10.1021/jm0504959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA) binds with high affinity and selectivity to the mu opioid receptor and is a potent and long-acting analgesic. Substitution of d-Arg in position 2 with Tic and masking of the lysine amine side chain by Z protection and of the C-terminal carboxylic function instead of the amide function transform a potent and selective mu agonist into a potent and selective delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. Such a delta antagonist could be used as a pharmacological tool.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li T, Shiotani K, Miyazaki A, Fujita Y, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Lazarus LH, Okada Y. New series of potent delta-opioid antagonists containing the H-Dmt-Tic-NH-hexyl-NH-R motif. Bioorg Med Chem Lett 2005; 15:5517-20. [PMID: 16183273 DOI: 10.1016/j.bmcl.2005.08.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/20/2005] [Accepted: 08/26/2005] [Indexed: 11/20/2022]
Abstract
Heterodimeric compounds H-Dmt-Tic-NH-hexyl-NH-R (R=Dmt, Tic, and Phe) exhibited high affinity to delta- (K(i)delta=0.13-0.89nM) and mu-opioid receptors (K(i)mu=0.38-2.81nM) with extraordinary potent delta antagonism (pA(2)=10.2-10.4). These compounds represent the prototype for a new class of structural homologues lacking mu-opioid receptor-associated agonism (IC(50)=1.6-5.8muM) based on the framework of bis-[H-Dmt-NH]-alkyl (Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem.2003, 46, 3201), which exhibited both high mu affinity and bioactivity.
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Balboni G, Salvadori S, Dal Piaz A, Bortolotti F, Argazzi R, Negri L, Lattanzi R, Bryant SD, Jinsmaa Y, Lazarus LH. Highly selective fluorescent analogue of the potent delta-opioid receptor antagonist Dmt-Tic. J Med Chem 2005; 47:6541-6. [PMID: 15588089 DOI: 10.1021/jm040128h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fluorescent tripeptide probe derived by coupling fluorescein to H-Dmt-Tic-Glu-NH2 was developed to interact with delta-opioid receptors with high affinity (Ki = 0.035 nM) and selectivity (Ki(mu)/Ki(delta) = 4371). It acts as an irreversible delta-opioid receptor antagonist, and binding to NG108-15 cells is blocked by the standard nonpeptidic delta-opioid receptor antagonist naltrindole. This probe should prove useful in the study of the distribution of delta-opioid receptors in tissues and the internalization of opioid peptides during signal transduction.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I-09126, Cagliary, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li T, Fujita Y, Tsuda Y, Miyazaki A, Ambo A, Sasaki Y, Jinsmaa Y, Bryant SD, Lazarus LH, Okada Y. Development of Potent μ-Opioid Receptor Ligands Using Unique Tyrosine Analogues of Endomorphin-2. J Med Chem 2005; 48:586-92. [PMID: 15658871 DOI: 10.1021/jm049384k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six analogues of tyrosine, which contained alkyl groups at positions 2', 3', and 6', either singly or in combination on the tyramine ring, were investigated for their effect on the opioid activity of [Xaa(1)]endomorphin-2 (EM-2). The opioid analogues displayed the following characteristics: (i) high mu-opioid receptor affinity [K(i)(mu) = 0.063-2.29 nM] with selectivity [K(i)(delta)/K(i)(mu)] ranging from 46 to 5347; (ii) potent functional mu-opioid agonism [GPI assay (IC(50) = 0.623-0.924 nM)] and with a correlation between delta-opioid receptor affinities and functional bioactivity using MVD; (iii) intracerebroventricular administration of [Dmt(1)]- (14) and [Det(1)]EM-2 (10) produced a dose-response antinociception in mice, with the former analogue more active than the latter; and (iv) a marked shift occurred from the trans-orientation at the Tyr(1)-Pro(2) bond to a cis-conformer compared to that observed previously with [Dmt(1)]EM-2 (14) (Okada et al. Bioorg. Med. Chem. 2003, 11, 1983-1984) except [Mmt(1)]EM-2 (7). The active profile of the [Xaa(1)]EM-2 analogues indicated that significant modifications on the tyramine ring are possible while high biological activity is maintained.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Binding, Competitive
- Brain/metabolism
- Guinea Pigs
- Ileum/drug effects
- Ileum/innervation
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Stereoisomerism
- Structure-Activity Relationship
- Tyrosine/analogs & derivatives
- Tyrosine/chemical synthesis
- Tyrosine/chemistry
- Tyrosine/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Faculty of Pharmaceutical Sciences, and High Technology Research Center, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Bryant SD, Jinsmaa Y, Lazarus LH. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism. J Med Chem 2004; 47:4066-71. [PMID: 15267245 DOI: 10.1021/jm040033f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' << 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining opioid receptor activity as an "address domain".
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding, Competitive
- Brain/metabolism
- Brain/ultrastructure
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Electric Stimulation
- Guinea Pigs
- In Vitro Techniques
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Radioligand Assay
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Stereoisomerism
- Structure-Activity Relationship
- Synaptosomes/metabolism
- Tetrahydroisoquinolines/chemical synthesis
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I-09126 Cagliary, Italy
| | | | | | | | | | | | | | | |
Collapse
|