1
|
Atashov A, Azamova M, Ziyatov D, Uzakbergenova Z, Torambetov B, Holczbauer T, Ashurov J, Kadirova S. Synthesis, crystal structure and Hirshfeld surface analysis of bromido-tetra-kis-[5-(prop-2-en-1-yl-sulf-an-yl)-1,3,4-thia-diazol-2-amine-κ N3]copper(II) bromide. Acta Crystallogr E Crystallogr Commun 2024; 80:408-412. [PMID: 38584734 PMCID: PMC10993600 DOI: 10.1107/s2056989024002652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
A novel cationic complex, bromido-tetra-kis-[5-(prop-2-en-1-ylsulfan-yl)-1,3,4-thia-diazol-2-amine-κN 3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol-ecular symmetry in the tetra-gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord-ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro-gen atoms from four AAT mol-ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter-act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter-mol-ecular inter-actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.
Collapse
Affiliation(s)
- Aziz Atashov
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
| | - Mukhlisakhon Azamova
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
| | - Daminbek Ziyatov
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
| | | | - Batirbay Torambetov
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
| | - Tamas Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudosok Korutja, H-1117 Budapest, Hungary
| | - Jamshid Ashurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
| | - Shakhnoza Kadirova
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
| |
Collapse
|
2
|
Pouramiri B, Rashidi M, Lotfi S, Mohammadi M, Rabiei K. Biological Evaluation of Anti-Cholinesterase Activity, in Silico Molecular Docking Studies, and DFT Calculations of Green Synthesized Thiadiazolo[3,2-a]pyrimidine Derivatives. Chem Biodivers 2023; 20:e202301193. [PMID: 37869899 DOI: 10.1002/cbdv.202301193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
A series of [1,3,4] thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives 4(a-n) have been designed and synthesized as inhibitors of acetylcholinesterase (AChE). Synthesizing of thiadiazolo[3,2-a] pyrimidines was carried out in a single step, one-pot reaction using aromatic aldehydes, ethyl acetoacetate and different derivatives of 1,3,4-thiadiazoles (with molar ratio of 1 : 2 : 1, respectively) in conjunction with the catalyst, anhydrous iron(III) chloride by a grinding method under solvent-free conditions at room temperature. The in-vitro studies exhibited good potency for inhibiting AChE comparable with donepezil as the reference drug. The best results were obtained by Ethyl 2-(4-nitroophenyl)-7-methyl-5-(pyridin-3-yl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate 4n with IC50 value of 0.082±0.001 μM which was comparable with AChE inhibitory effects of donepezil (IC50 =0.079 μM).
Collapse
Affiliation(s)
- Behjat Pouramiri
- Department of Organic Chemistry, Qom University of Technology, Qom
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 37195 Qom, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Khadijeh Rabiei
- Department of Organic Chemistry, Qom University of Technology, Qom
| |
Collapse
|
3
|
Moussa Z, Paz AP, Judeh ZMA, Alzamly A, Saadeh HA, Asghar BH, Alsaedi S, Masoud B, Almeqbaali S, Estwani S, Aljaberi A, Al-Rooqi MM, Ahmed SA. First X-ray Crystal Structure Characterization, Computational Studies, and Improved Synthetic Route to the Bioactive 5-Arylimino-1,3,4-thiadiazole Derivatives. Int J Mol Sci 2023; 24:3759. [PMID: 36835167 PMCID: PMC9965731 DOI: 10.3390/ijms24043759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
N-arylcyanothioformamides are useful coupling components for building key chemical intermediates and biologically active molecules in an expedited and efficient manner. Similarly, substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides have been utilized in numerous one-step heteroannulation reactions to assemble the structural core of several different types of heterocyclic compounds. Herein, we demonstrate the effectiveness of the reaction of N-arylcyanothioformamides with various substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides to produce, stereoselectively and regioselectively, a range of 5-arylimino-1,3,4-thiadiazole derivatives decorated with a multitude of functional groups on both aromatic rings. The synthetic methodology features mild room-temperature conditions, large substrate scope, wide array of functional groups on both reactants, and good to high reaction yields. The products were isolated by gravity filtration in all cases and structures were confirmed by multinuclear NMR spectroscopy and high accuracy mass spectral analysis. Proof of molecular structure of the isolated 5-arylimino-1,3,4-thiadiazole regioisomer was obtained for the first time by single-crystal X-ray diffraction analysis. Crystal-structure determination was carried out on (Z)-1-(5-((3-fluorophenyl)imino)-4-(4-iodophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one and (Z)-1-(4-phenyl-5-(p-tolylimino)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one. Similarly, the tautomeric structures of the N-arylcyanothioformamides and (Z)-geometries of the 2-oxo-N-phenylpropanehydrazonoyl chloride coupling partners were proven by X-ray diffraction studies. As representative examples, crystal-structure determination was carried out on (4-ethoxyphenyl)carbamothioyl cyanide and (Z)-N-(2,3-difluorophenyl)-2-oxopropanehydrazonoyl chloride. Density functional theory calculations at the B3LYP-D4/def2-TZVP level were carried out to rationalize the observed experimental findings.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alejandro Perez Paz
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Zaher M. A. Judeh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, N1.2–B1-14, Singapore 637459, Singapore
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Haythem A. Saadeh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sara Alsaedi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bayan Masoud
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salama Almeqbaali
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeda Estwani
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amna Aljaberi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Munirah M. Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
4
|
Ozcan I, Akkoc S, Alici H, Capanlar S, Sahin O, Tahtaci H. Novel Thioether-Bridged 2,6-Disubstituted and 2,5,6-Trisubstituted Imidazothiadiazole Analogues: Synthesis, Antiproliferative Activity, ADME, and Molecular Docking Studies. Chem Biodivers 2023; 20:e202200884. [PMID: 36445849 DOI: 10.1002/cbdv.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In this study, starting from 2-amino-1,3,4-thiadiazole derivatives (3-5), a new series of 2,6-disubstituted (compounds 7-15) and 2,5,6-trisubstituted (compounds 16-33) imidazo[2,1-b][1,3,4]-thiadiazole derivatives were synthesized using cyclization and Mannich reaction mechanisms, respectively. All synthesized compounds were characterized by 1 H-NMR, 13 C-NMR, FT-IR, elemental analysis, and mass spectroscopy techniques. Also, X-ray diffraction analysis were used for compounds 4, 7, 11, 17, and 19. The cytotoxic effects of the new compounds on the viability of colon cancer cells (DLD-1), lung cancer cells (A549), and liver cancer cells (HepG2) were investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in vitro. Compound 15 was found to be the most potent anticancer drug candidate in this series with an IC50 value of 3.63 μM against HepG2 for 48 h. Moreover, the absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were calculated and thus, their potential to be safe drugs was evaluated. Finally, to support the biological activity experiments, molecular docking studies of these compounds were carried out on three different target cancer protein structures (PDB IDs: 5ETY, 1M17, and 3GCW), and the amino acids that play key roles in the binding of the compounds to these proteins were determined.
Collapse
Affiliation(s)
- Ibrahim Ozcan
- Karabuk University, Faculty of Science, Department of Chemistry, 78050, Karabuk, Türkiye
| | - Senem Akkoc
- Süleyman Demirel University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 32260, Isparta, Türkiye.,Bahcesehir University, Faculty of Engineering and Natural Sciences, 34353, Istanbul, Türkiye
| | - Hakan Alici
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Physics, 67100, Zonguldak, Türkiye
| | - Seval Capanlar
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Chemistry, 67100, Zonguldak, Türkiye
| | - Onur Sahin
- Sinop University, Faculty of Health Sciences, Department of Occupational Health & Safety, 57000, Sinop, Türkiye
| | - Hakan Tahtaci
- Karabuk University, Faculty of Science, Department of Chemistry, 78050, Karabuk, Türkiye
| |
Collapse
|
5
|
Shi Z, Li R, Lan W, Wei H, Sheng S, Chen J. Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zhaocheng Shi
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Ruohan Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Wenqing Lan
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Haishan Wei
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Shouri Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
6
|
Elwahy AHM, Eid EM, Abdel-Latif SA, Hassaneen HME, Abdelhamid IA. Design, Synthesis, DFT, TD-DFT/PCM Calculations, and Molecular Docking Studies on the Anti-COVID-19, and Anti-SARS Activities of Some New Bis-Thiazoles and Bis-Thiadiazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Elshimaa M. Eid
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
7
|
Omar AZ, Alshaye NA, Mosa TM, El-Sadany SK, Hamed EA, El-Atawy MA. Synthesis and Antimicrobial Activity Screening of Piperazines Bearing N, N'-Bis(1,3,4-thiadiazole) Moiety as Probable Enoyl-ACP Reductase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123698. [PMID: 35744824 PMCID: PMC9228617 DOI: 10.3390/molecules27123698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
A new N,N'-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from -6.1090 to -9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score.
Collapse
Affiliation(s)
- Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
- Correspondence: (A.Z.O.); (M.A.E.-A.)
| | - Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Tawfik M. Mosa
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Samir K. El-Sadany
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
- Correspondence: (A.Z.O.); (M.A.E.-A.)
| |
Collapse
|
8
|
Raut DG, Bhosale RB, Lawand AS, Hublikar MG, Kadu VD, Patil SB. A Novel Method for the Syntheses of Imidazo-Thiadiazoles as Potential Antioxidants and Anti-Inflammatory Agents. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:19-25. [PMID: 35410625 DOI: 10.2174/2772270816666220410130059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND A literature survey revealed that many imidazo-thiadiazole molecules were used as key intermediates for the development of novel drugs. The synthesized imidazo-thiadiazole derivatives were tested for their in vitro antioxidant and anti-inflammatory properties. The purpose of this research paper is to provide readers with information regarding diseases caused by free radicals. OBJECTIVE The objective of this study is to develop novel antioxidant and anti-inflammatory drugs. METHODS Imidazo-thiadiazole derivatives 5a-f were synthesized through cyclo-condensation reactions in two steps. First, the synthesis of 2-amino-thiadiazole derivatives from substituted aromatic carboxylic acids and thiosemicarbazide by using POCl3 as a solvent as well as a catalyst was performed. In the next step, imidazo-thiadiazoles were prepared from 2-amino-thiadiazole derivatives with appropriate α-haloketones in the presence of polyethylene glycol-300 (PEG-300) as a green solvent. These imidazo- thiadiazole derivatives were prepared by using a novel method. The synthesized compounds were in vitro tested for their antioxidant and anti-inflammatory activities. RESULTS In vitro evaluation report showed that nearly all molecules possess potential antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide radical (SOR), and hydrogen peroxide (H2O2) radical scavenging activity. Most of the imidazo-thiadiazole derivatives have shown significant anti-inflammatory activity as compared to diclofenac sodium as a reference standard. CONCLUSION In the search for novel therapies to treat inflammation and oxidation, we have made efforts to develop anti-inflammatory and antioxidant agents with a preeminent activity. Imidazo-thiadiazoles 5a, 5e as well as 5f showed potential anti-inflammatory activity. All tested imidazo-thiadiazole deriv-atives (5a-f) showed potential antioxidant activity against one more radical scavenging species as com-pared to ascorbic acid as the reference standard. Thus, imidazo-thiadiazole derivatives constitute an interesting template for the design and development of new antioxidant as well as anti-inflammatory agents.
Collapse
Affiliation(s)
- Dattatraya G Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur-413255 Maharashtra, India
| | - Raghunath B Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur-413255 Maharashtra, India
| | - Anjana S Lawand
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur-413255 Maharashtra, India
| | - Mahesh G Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur-413255 Maharashtra, India
| | - Vikas D Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur-413255 Maharashtra, India
| | - Sandeep B Patil
- Department of Pharmacology, Dr. Shivajirao Kadam College of Pharmacy Kasbe Digraj, Sangli, Maharashtra, India
| |
Collapse
|
9
|
Meshkatalsadat MH, Mahmoudi A, Lotfi S, Pouramiri B, Foroumadi A. Green and four-component cyclocondensation synthesis and in silico docking of new polyfunctionalized pyrrole derivatives as the potential anticholinesterase agents. Mol Divers 2022; 26:3021-3035. [PMID: 35034271 DOI: 10.1007/s11030-021-10362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Synthesis of new substituted pyrrole scaffolds containing substituted thiadiazol-2-amine moiety was successfully developed through one-pot and multi-component tandem condensation reaction utilizing of triethyl ammonium hydrogen sulfate ([Et3NH][HSO4]) ionic liquid as a green media under solvent-free conditions. The chemical structures of all newly synthesized compounds were fully characterized by spectroscopic methods (IR, 1H NMR, 13C NMR) and elemental analyzes. The molecular docking studies were also performed to predict the possible binding sites of the derivatives on the active site gorge of cholinesterase enzymes (AChE and BuChE). The results showed that all the seventeen derivatives interact with the enzymes with high affinity and among them 7d and 7f possess the greatest ability to bind to AChE and BuChE, respectively.
Collapse
Affiliation(s)
| | - Ahmad Mahmoudi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Behjat Pouramiri
- Department of Chemistry, Faculty of Science, Qom University of Technology, 37195, Qom, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Sarchahi M, Esmaeili AA. Synthesis of novel trifluoro methylated imidazothiadiazole derivatives via one-pot isocyanide-based three-component reaction under catalyst and solvent-free conditions. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1966429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Sarchahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Abu-Melha S. Synthesis, Molecular Modeling, and Anticancer Screening of Some New Imidazothiadiazole Analogs. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1957951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
13
|
Yan Guo F, Ji Zheng C, Wang M, Ai J, Ying Han L, Yang L, Fang Lu Y, Xuan Yang Y, Guan Piao M, Piao HR, Jin CM, Jin CH. Synthesis and Antimicrobial Activity Evaluation of Imidazole-Fused Imidazo[2,1-b][1,3,4]thiadiazole Analogues. ChemMedChem 2021; 16:2354-2365. [PMID: 33738962 DOI: 10.1002/cmdc.202100122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Three series of new imidazole-fused imidazo[2,1-b][1,3,4]thiadiazole analogues (compounds 20 a-g, 21 a-g, and 22 a-g) have been synthesized, and their antibacterial and antifungal activities have been evaluated. All the target compounds showed strong antifungal activity and high selectivity for the test fungus Candida albicans over Gram-positive and -negative bacteria. N-((4-(2-Cyclopropyl-6-(4-fluorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl)-5-(6-methyl-pyridin-2-yl)-1H-imidazol-2-yl)methyl)aniline (21 a) showed the highest activity against C. albicans (MIC50 =0.16 μg/mL), 13 and three times that of the positive control compounds gatifloxacin and fluconazole, respectively. Compounds 21 a and 20 e did not show cytotoxicity against human foreskin fibroblast-1 cells, and compound 21 a was as safe as the positive control compounds in hemolysis tests. These results strongly suggest that some of the compounds produced in this work have value for development as antifungal agents.
Collapse
Affiliation(s)
- Fang Yan Guo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chang Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Meiyuan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Jiangping Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Lan Ying Han
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Liu Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ye Fang Lu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Yu Xuan Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chun-Mei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| |
Collapse
|
14
|
Synthesis, Characterization, Antimicrobial Evaluation, and Computational Investigation of Substituted Imidazo[2,1‐
b
][1,3,4]Thiadiazole Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202002821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Janowska S, Paneth A, Wujec M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives-A Review. Molecules 2020; 25:molecules25184309. [PMID: 32962192 PMCID: PMC7570754 DOI: 10.3390/molecules25184309] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
During recent years, small molecules containing five-member heterocyclic moieties have become the subject of considerable growing interest for designing new antitumor agents. One of them is 1,3,4-thiadiazole. This study is an attempt to collect the 1,3,4-thiadiazole and its derivatives, which can be considered as potential anticancer agents, reported in the literature in the last ten years.
Collapse
|
16
|
Liu Y, Yang L, Yin D. Ferrocenyl imidazolo[2,1- b]-1,3,4-thiadiazoles: A microwave-assisted catalyst-free synthesis, characterization, and biological activities. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820939906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ferrocenyl imidazolo[2,1- b]-1,3,4-thiadiazoles are synthesized using 2-amino-5-substituted-1,3,4-thiadiazole and α-bromoacetyl ferrocene as substrates under microwave-assisted and catalyst-free conditions. The structures are characterized by infrared, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, mass spectrometry, and elemental analysis. Compared with conventional methods, the present protocol has the advantages of being rapid, efficient, environmentally friendly, and low cost. The results of biological activity studies showed that the products displayed better activities than those of 2-amino-5-substituted-1,3,4-thiadiazole. The biological activities of compounds in which R = phenyl were better than those with alkyl groups. Compounds with electron-withdrawing groups on the aryl moiety showed increased biological activities.
Collapse
Affiliation(s)
- Yuting Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, P.R. China
| | - Lan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, P.R. China
| | - Dawei Yin
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, P.R. China
| |
Collapse
|
17
|
Wagare DS, Sonone A, Farooqui M, Durrani A. An Efficient and Green Microwave-Assisted One Pot Synthesis of Imidazothiadiazoles in PEG-400 and Water. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1695637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Ashwini Sonone
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| | - Mazahar Farooqui
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| | - Ayesha Durrani
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| |
Collapse
|
18
|
Frija LMT, Ntungwe E, Sitarek P, Andrade JM, Toma M, Śliwiński T, Cabral L, S. Cristiano ML, Rijo P, Pombeiro AJL. In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin-Tetrazolyl and -Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity. Pharmaceuticals (Basel) 2019; 12:E167. [PMID: 31726663 PMCID: PMC6958446 DOI: 10.3390/ph12040167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin-tetrazolyl and -thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against Gram-positive and Gram-negative bacteria and yeasts. Scrutiny of the MIC and MBC values of the compounds at pH 4.0, 7.0, and 9.0 against four Gram-positive strains revealed high values for both the MIC and MBC at pH 4.0 (ranging from 0.98 to 125 µg/mL) and moderate values at pH 7.0 and 9.0, exposing strong antimicrobial activities in an acidic medium. An antioxidant activity analysis of the molecules was performed by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, which showed high activity for the TSMT (N-(1-methyl-2H-tetrazol-5-yl)-N-(1,1-dioxo-1,2-benzisothiazol-3-yl) amine, 7) derivative (90.29% compared to a butylated hydroxytoluene positive control of 61.96%). Besides, the general toxicity of the saccharin analogs was evaluated in an Artemia salina model, which displayed insignificant toxicity values. In turn, upon an assessment of cell viability, all of the compounds were found to be nontoxic in range concentrations of 0-100 µg/mL in H7PX glioma cells. The tested molecules have inspiring antimicrobial and antioxidant properties that represent potential core structures in the design of new drugs for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Luís M. T. Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Epole Ntungwe
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151 Łódź, Poland;
| | - Joana M. Andrade
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Lília Cabral
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - M. Lurdes S. Cristiano
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - Patrícia Rijo
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| |
Collapse
|
19
|
Parveen M, Aslam A, Alam M, Siddiqui MF, Bano B, Azaz S, Silva MR, Silva PSP. Synthesisand Characterization of Benzothiophene‐3‐carbonitrile Derivative and Its Interactions with Human Serum Albumin (HSA). ChemistrySelect 2019. [DOI: 10.1002/slct.201902378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mehtab Parveen
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Afroz Aslam
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Mahboob Alam
- Division of Chemistry and BiotechnologyDongguk University 123Dongdae-ro Gyeongju 780-714 Republic of Korea
| | | | - Bilqees Bano
- Department of BiochemistryAligarh Muslim University Aligarh 202002 India
| | - Shaista Azaz
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Manuela Ramos Silva
- CFisUCDepartment of PhysicsUniversity of Coimbra, P- 3004-516 Coimbra Portugal
| | - P. S. Pereira Silva
- CFisUCDepartment of PhysicsUniversity of Coimbra, P- 3004-516 Coimbra Portugal
| |
Collapse
|
20
|
Khidre RE, Radini IAM, Ibrahim DA. Design and synthesis of some new thiophene and 1,3,4-thiadiazole based heterocycles. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1598408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rizk E. Khidre
- Chemical Industries Division, National Research Centre, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | | | - Diaa A. Ibrahim
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- National Organization for Drug Control & Research, Giza, Egypt
| |
Collapse
|
21
|
Taflan E, Bayrak H, Er M, Alpay Karaoğlu Ş, Bozdeveci A. Novel imidazo[2,1-b][1,3,4]thiadiazole (ITD) hybrid compounds: Design, synthesis, efficient antibacterial activity and antioxidant effects. Bioorg Chem 2019; 89:102998. [DOI: 10.1016/j.bioorg.2019.102998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
|
22
|
Mannam MR, S. S, Kumar P, K RSP. Synthesis of Novel 1‐(5‐(Benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3
H
)‐ylidene)‐thiourea/urea Derivatives and Evaluation of Their Antimicrobial Activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Madhava Rao Mannam
- Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram Andhra Pradesh 522 502 India
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - Srimurugan S.
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - Pramod Kumar
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - R. S. Prasad K
- Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram Andhra Pradesh 522 502 India
| |
Collapse
|
23
|
Synthesis of novel Schiff bases and azol-β-lactam derivatives starting from morpholine and thiomorpholine and investigation of their antitubercular, antiurease activity, acethylcolinesterase inhibition effect and antioxidant capacity. Bioorg Chem 2019; 88:102928. [DOI: 10.1016/j.bioorg.2019.102928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022]
|
24
|
Abdel-Wareth MTA, El-Hagrassi AM, Abdel-Aziz MS, Nasr SM, Ghareeb MA. Biological activities of endozoic fungi isolated from Biomphalaria alexandrina snails maintained in different environmental conditions. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/00207233.2019.1620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marwa T. A. Abdel-Wareth
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ali M. El-Hagrassi
- Phytochemistry and Plant Systematic Department, Pharmaceutical Industries Division, National Research Centre, Giza, Egypt
| | - Mohamed S. Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, Egypt
| | - Sami M. Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mosad A. Ghareeb
- Medicinal Chemistry, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
25
|
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellier P, Lesyk R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur J Med Chem 2019; 174:292-308. [PMID: 31051403 DOI: 10.1016/j.ejmech.2019.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | | | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznan, 60-780, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, CP 52, 57 Rue Cuvier, 75005, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
26
|
Shah R, Verma PK. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem 2019; 13:54. [PMID: 31384802 PMCID: PMC6661813 DOI: 10.1186/s13065-019-0569-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background A new series of thiophene analogues was synthesized and checked for their in vitro antibacterial, antifungal, antioxidant, anticorrosion and anticancer activities. Results A series of ethyl-2-(substituted benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate derivatives were synthesized by using Gewald synthesis and their structures were confirmed by FTIR, MS and 1H-NMR. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity against selected microbial species using tube dilution method, antiproliferative activity against human lung cancer cell line (A-549) by sulforhodamine B assay, antioxidant activity by using DPPH method and anticorrosion activity by gravimetric method. Conclusion Antimicrobial screening results showed that compound S 1 was the most potent antibacterial agent against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi having MIC value 0.81 µM/ml and compound S 4 also displayed excellent antifungal activity against both Candida albicans and Aspergillus niger (MIC = 0.91 µM/ml) when compared with cefadroxil (antibacterial) and fluconazole (antifungal) as standard drug. The antioxidant screening results indicated that compound S 4 and S 6 exhibited excellent antioxidant activity with IC50 values 48.45 and 45.33 respectively when compared with the ascorbic acid as standard drug. Anticorrosion screening results indicated that compound S 7 showed more anticorrosion efficiency (97.90%) with low corrosion rate. Results of anticancer screening indicated that compound S 8 showed effective cytotoxic activity against human lung cancer cell line (A-549) at dose of 10-4 M when compared with adriamycin as standard.
Collapse
Affiliation(s)
- Rashmi Shah
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
27
|
Hadadianpour E, Pouramiri B. Facile, efficient and one-pot access to diverse new functionalized aminoalkyl and amidoalkyl naphthol scaffolds via green multicomponent reaction using triethylammonium hydrogen sulfate ([Et 3NH][HSO 4]) as an acidic ionic liquid under solvent-free conditions. Mol Divers 2019; 24:241-252. [PMID: 30953294 DOI: 10.1007/s11030-019-09945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
An efficient, clean and one-pot multicomponent synthesis of divers kind of new functionalized aminoalkyl naphthol and amidoalkyl naphthol derivatives via tandem condensation reaction of 2-naphthol, aromatic aldehydes and 5-methyl-1,3,4-thiadiazol-2-amine/5-aryl-1,3,4-thiadiazol-2-amines urea/acetamide under solvent-free conditions is reported. Following this protocol, it was possible to synthesize novel 1-(((5-methyl-1,3,4-thiadiazol-2-yl)amino)(aryl)methyl)naphthalen-2-ol, 1-(aryl((5-aryl-1,3,4-thiadiazol-2-yl)amino)methyl)naphthalen-2-ol and amidoalkyl naphthol derivatives. This protocol includes some salient features, such as the use of triethylammonium hydrogen sulfate ([Et3NH][HSO4]) ionic liquid as a green, clean and reusable catalyst, no column chromatographic separation, high atom economy, good yields, low cost and finally no need for a complex procedure.
Collapse
Affiliation(s)
| | - Behjat Pouramiri
- Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Kerman, 76179, Iran.
| |
Collapse
|
28
|
Bao Y, Wang JY, Zhang YX, Li Y, Wang XS. Palladium-catalyzed C-H formylation of electron-rich heteroarenes through radical dichloromethylation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Chakrapani B, Ramesh V, Pourna Chander Rao G, Ramachandran D, Madhukar Reddy T, Kalyan Chakravarthy A, Sridhar G. Synthesis and Anticancer Evaluation of 1,2,4-Oxadiazole Linked Imidazothiadiazole Derivatives. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218050304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
31
|
The Chemistry of Sulfur-Containing [5,5]-Fused Ring Systems With a Bridgehead Nitrogen. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Synthesis of 2-Amino-1,3,4-oxadiazoles through Elemental Sulfur Promoted Cyclization of Hydrazides with Isocyanides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Hamama WS, Ibrahim ME, Raoof HA, Zoorob HH. Chemistry of bicyclic [1,3,4]thiadiazole 5-5 systems containing ring-junction nitrogen. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2988-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Patel HM, Noolvi MN, Sethi NS, Gadad AK, Cameotra SS. Synthesis and antitubercular evaluation of imidazo[2,1- b ][1,3,4]thiadiazole derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Zhou Z, Liu Y, Chen J, Yao E, Cheng J. Multicomponent Coupling Reactions of Two N-Tosyl Hydrazones and Elemental Sulfur: Selective Denitrogenation Pathway toward Unsymmetric 2,5-Disubstituted 1,3,4-Thiadiazoles. Org Lett 2016; 18:5268-5271. [DOI: 10.1021/acs.orglett.6b02583] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Zhou
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yang Liu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangfei Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - En Yao
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
36
|
Bhongade BA, Talath S, Gadad RA, Gadad AK. Biological activities of imidazo[2,1-b][1,3,4]thiadiazole derivatives: A review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Bhardwaj V, Noolvi MN, Jalhan S, Patel HM. Synthesis, and antimicrobial evaluation of new pyridine imidazo [2,1b]-1,3,4-thiadiazole derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2012.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Salem ME, Darweesh AF, Farag AM, Elwahy AHM. Synthesis and Structures of Novel Multi-armed Molecules Involving Benzene as a Core and 4-Phenylthiazole, 4-Pyrazolylthiazole, or Thiadiazole Units as Arms. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmad M. Farag
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed H. M. Elwahy
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|
39
|
Xie H, Cai J, Wang Z, Huang H, Deng GJ. A Three-Component Approach to 3,5-Diaryl-1,2,4-thiadiazoles under Transition-Metal-Free Conditions. Org Lett 2016; 18:2196-9. [DOI: 10.1021/acs.orglett.6b00806] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Xie
- Key Laboratory of Environmentally
Friendly Chemistry and Application of Ministry of Education, College
of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jinhui Cai
- Key Laboratory of Environmentally
Friendly Chemistry and Application of Ministry of Education, College
of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zilong Wang
- Key Laboratory of Environmentally
Friendly Chemistry and Application of Ministry of Education, College
of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory of Environmentally
Friendly Chemistry and Application of Ministry of Education, College
of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally
Friendly Chemistry and Application of Ministry of Education, College
of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
40
|
Copin C, Buron F, Routier S. Palladium-Catalyzed Amination of C-5 Bromoimidazo[2,1-b][1,3,4]thiadiazoles. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Salar U, Taha M, Ismail NH, Khan KM, Imran S, Perveen S, Wadood A, Riaz M. Thiadiazole derivatives as New Class of β-glucuronidase inhibitors. Bioorg Med Chem 2016; 24:1909-18. [DOI: 10.1016/j.bmc.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
|
42
|
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. Ionic liquid-promoted one-pot synthesis of thiazole–imidazo[2,1-b][1,3,4]thiadiazole hybrids and their antitubercular activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00346f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The anti-TB activity of new thiazole–imidazo[2,1-b][1,3,4]thiadiazoles, which are synthesized via one-pot synthesis, is comparable with that of standard drugs.
Collapse
Affiliation(s)
- Jurupula Ramprasad
- Organic Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka, Surathkal
- Mangalore-575025
- India
| | - Nagabhushana Nayak
- Organic Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka, Surathkal
- Mangalore-575025
- India
| | - Udayakumar Dalimba
- Organic Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka, Surathkal
- Mangalore-575025
- India
| | - Perumal Yogeeswari
- Medicinal Chemistry and Drug Discovery Research Laboratory
- Pharmacy Group
- Birla Institute of Technology and Science-Pilani
- Hyderabad Campus
- India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Drug Discovery Research Laboratory
- Pharmacy Group
- Birla Institute of Technology and Science-Pilani
- Hyderabad Campus
- India
| |
Collapse
|
43
|
A Nano-MgO and Ionic Liquid-Catalyzed 'Green' Synthesis Protocol for the Development of Adamantyl-Imidazolo-Thiadiazoles as Anti-Tuberculosis Agents Targeting Sterol 14α-Demethylase (CYP51). PLoS One 2015; 10:e0139798. [PMID: 26470029 PMCID: PMC4607480 DOI: 10.1371/journal.pone.0139798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
In this work, we describe the 'green' synthesis of novel 6-(adamantan-1-yl)-2-substituted-imidazo[2,1-b][1,3,4]thiadiazoles (AITs) by ring formation reactions using 1-(adamantan-1-yl)-2-bromoethanone and 5-alkyl/aryl-2-amino1,3,4-thiadiazoles on a nano material base in ionic liquid media. Given the established activity of imidazothiadiazoles against M. tuberculosis, we next examined the anti-TB activity of AITs against the H37Rv strain using Alamar blue assay. Among the tested compounds 6-(adamantan-1-yl)-2-(4-methoxyphenyl)imidazo[2,1-b][1,3,4]thiadiazole (3f) showed potent inhibitory activity towards M. tuberculosis with an MIC value of 8.5 μM. The inhibitory effect of this molecule against M. tuberculosis was comparable to the standard drugs such as Pyrazinamide, Streptomycin, and Ciprofloxacin drugs. Mechanistically, an in silico analysis predicted sterol 14α-demethylase (CYP51) as the likely target and experimental activity of 3f in this system corroborated the in silico target prediction. In summary, we herein report the synthesis and biological evaluation of novel AITs against M. tuberculosis that likely target CYP51 to induce their antimycobacterial activity.
Collapse
|
44
|
Belavagi NS, Sunagar MG, Lamani RS, Deshapande N, Khazi IAM. Synthesis and antimicrobial activity of novel sulfides and sulfones of methylene-bridged benzisoxazolylimidazo[2,1- b][1,3,4]thiadiazoles. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1012196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | - Ravi S. Lamani
- Department of Chemistry, Karnatak University, Dharwad, Karnatak, India
| | | | | |
Collapse
|
45
|
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. One-pot synthesis of new triazole—Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg Med Chem Lett 2015; 25:4169-73. [DOI: 10.1016/j.bmcl.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/18/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
|
46
|
Copin C, Massip S, Léger JM, Jarry C, Buron F, Routier S. SNAr versus Buchwald-Hartwig Amination/Amidation in the Imidazo[2,1-b][1,3,4]thiadiazole Series. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Evranos-Aksöz B, Onurdağ FK, Özgacar SÖ. Antibacterial, antifungal and antimycobacterial activities of some pyrazoline, hydrazone and chalcone derivatives. ACTA ACUST UNITED AC 2015; 70:183-9. [DOI: 10.1515/znc-2014-4195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Twenty-seven previously reported chalcones and their pyrazoline and hydrazone derivatives as well as two further chalcones have been screened for their antimicrobial, antifungal and antimycobacterial activities against standard microbial strains and drug resistant isolates. The minimum inhibitory concentration (MIC) value of each compound was determined by a two-fold serial microdilution technique. The compounds were found to possess a broad spectrum of antimicrobial activities with MIC values of 8–128 μg/mL. One compound [(E)-1-(4-hydroxyphenyl)-3-p-tolylprop-2-en-1-one] had equal activity with gentamycin (8 μg/mL) against Enterococcus faecalis. Chalcones were found to be more active than their hydrazone and 2-pyrazoline derivatives against Staphylococcus aureus ATCC 29213 and E. faecalis ATCC 29212.
Collapse
Affiliation(s)
- Begüm Evranos-Aksöz
- Analysis and Control Laboratories of General Directorate of Pharmaceuticals and Pharmacy, Ministry of Health of Turkey, 06100 Sıhhiye, Ankara, Turkey
| | - Fatma Kaynak Onurdağ
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Trakya University, 22030 Edirne, Turkey
| | - Selda Özgen Özgacar
- Ministry of Health of Turkey, General Directorate of Pharmaceuticals and Pharmacy, 06520 Ankara, Turkey
| |
Collapse
|
48
|
Sayed OM, Mekky AEM, Farag AM, Elwahy AHM. 3,4-Bis(bromomethyl)thieno[2,3-b]thiophene: Versatile Precursors for Novel Bis(triazolothiadiazines), Bis(quinoxalines), Bis(dihydrooxadiazoles), and Bis(dihydrothiadiazoles). J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Osama M. Sayed
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Ahmad M. Farag
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | | |
Collapse
|
49
|
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D, Peethambar S, Achur R, Kumar HSS. Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole-benzimidazole derivatives. Eur J Med Chem 2015; 95:49-63. [DOI: 10.1016/j.ejmech.2015.03.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/27/2022]
|
50
|
Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem 2015; 89:743-816. [PMID: 25462280 PMCID: PMC7115492 DOI: 10.1016/j.ejmech.2014.10.076] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
The biological activity of Mannich bases, a structurally heterogeneous class of chemical compounds that are generated from various substrates through the introduction of an aminomethyl function by means of the Mannich reaction, is surveyed, with emphasis on the relationship between structure and biological activity. The review covers extensively the literature reports that have disclosed Mannich bases as anticancer and cytotoxic agents, or compounds with potential antibacterial and antifungal activity in the last decade. The most relevant studies on the activity of Mannich bases as antimycobacterial agents, antimalarials, or antiviral candidates have been included as well. The review contains also a thorough coverage of anticonvulsant, anti-inflammatory, analgesic and antioxidant activities of Mannich bases. In addition, several minor biological activities of Mannich bases, such as their ability to regulate blood pressure or inhibit platelet aggregation, their antiparasitic and anti-ulcer effects, as well as their use as agents for the treatment of mental disorders have been presented. The review gives in the end a brief overview of the potential of Mannich bases as inhibitors of various enzymes or ligands for several receptors.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers, 41A Aleea Gr. Ghica Vodă, Iaşi 700487, Romania.
| |
Collapse
|