1
|
Piao Y, Himbert S, Li Z, Liu J, Zhao Z, Yu H, Liu S, Shao S, Fefer M, Rheinstädter MC, Shen Y. Alkylated EDTA potentiates antibacterial photodynamic activity of protoporphyrin. J Nanobiotechnology 2024; 22:161. [PMID: 38589895 PMCID: PMC11003131 DOI: 10.1186/s12951-024-02353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.
Collapse
Affiliation(s)
- Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 3Z5, Canada.
| | - Zifan Li
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Suncor AgroScience, Mississauga, ON, L5K 1A8, Canada
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Huahai Yu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuangshuang Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Michael Fefer
- Suncor AgroScience, Mississauga, ON, L5K 1A8, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 3Z5, Canada.
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Savelyeva IO, Zhdanova KA, Gradova MA, Gradov OV, Bragina NA. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Curr Issues Mol Biol 2023; 45:9793-9822. [PMID: 38132458 PMCID: PMC10741785 DOI: 10.3390/cimb45120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.
Collapse
Affiliation(s)
- Inga O. Savelyeva
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Kseniya A. Zhdanova
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Natal’ya A. Bragina
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| |
Collapse
|
3
|
Spesia MB, Durantini EN. Photosensitizers combination approach to enhance photodynamic inactivation of planktonic and biofilm bacteria. Photochem Photobiol Sci 2023; 22:2433-2444. [PMID: 37490212 DOI: 10.1007/s43630-023-00461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
To improve bacterial photodynamic inactivation (PDI), this work analyzes the photodynamic effect caused by the combination of photosensitizers (PSs) on two bacterial models and different growth mode. Simultaneous administration of PSs from different families, zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc4+), 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TMAP4+), meso-tetrakis(9-ethyl-9-methyl-3-carbazoyl)chlorin (TEMCC4+) and 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin (TAPC) was investigated against Staphylococcus aureus and Escherichia coli, in planktonic form, biofilm and growth curve. Various PSs combinations showed greater inactivation compared to when used separately under the same conditions but at twice the concentration. However, differences were found in the effectiveness of the PSs combinations on Gram positive and negative bacteria, as well as in planktonic or biofilm form. Likewise, the combination of three PSs completely stopped E. coli growth under optimal nutritional conditions. PSs combination allows extending the range of light absorption by agents that absorb in different areas of the visible spectrum. Therefore, PDI with combined PSs increases its antimicrobial capacity using agents' concentrations and light fluences lower than those necessary to cause the same effect as single PS. These advances represent a starting point for future research on the potentiation of PDI promoted by the combined use of PSs.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
4
|
Heredia DA, Durantini JE, Ferreyra DD, Reynoso E, Gonzalez Lopez EJ, Durantini AM, Milanesio ME, Durantini EN. Charge density distribution effect in pyrrolidine-fused chlorins on microbial uptake and antimicrobial photoinactivation of microbial pathogens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112321. [PMID: 34695700 DOI: 10.1016/j.jphotobiol.2021.112321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/15/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023]
Abstract
Two novels structurally related pyrrolidine-fused chlorins were synthesized from 5,10,15,20-tetrakis(pentafluorophenyl)chlorin by nucleophilic aromatic substitution of the para-fluoro groups. The reaction with 2-dimethylaminoethanol produced TPCF16-NMe2 in 77% yield, while TPCF16-NBu was obtained using butylamine in 87% yield. The latter was extensively methylated to form TPCF16-N+Bu in 92% yield. The synthetic strategy was designed to compare the effect of charge density distribution on chlorin in the efficacy to induce photodynamic inactivation of pathogens. TPCF16-NMe2 has five tertiary amines that can acquire positive charges in aqueous medium by protonation. Furthermore, four of the cationic groups are located in amino groups linked to the chlorine macrocycle by an aliphatic structure of two carbon atoms, which gives it greater movement capacity. In contrast, TPCF16-N+Bu presents intrinsic positive charges on aromatic rings. Absorption and fluorescence emission properties were not affected by the peripheral substitution on the chlorin macrocycle. Both photosensitizers (PSs) were able to form singlet molecular oxygen and superoxide anion radical in solution. Uptake and photodynamic inactivation mediated by these chlorins were examined on Staphylococcus aureus and Escherichia coli. Both phototherapeutic agents produced efficient photoinactivation of S. aureus. However, only TPCF16-NMe2 was rapidly bound to E. coli cells and this chlorin was effective to photoinactivate both strains of bacteria using lower concentrations and shorter irradiation periods. Our outcomes reveal that the charge density distribution is a key factor to consider in the development of new PSs. Accordingly, this work stands out as a promising starting point for the design of new tetrapyrrolic macrocycles with application in PDI.
Collapse
Affiliation(s)
- Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Darío D Ferreyra
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edwin J Gonzalez Lopez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
5
|
Fayyaz F, Rassa M, Rahimi R. Antibacterial Photoactivity and Thermal Stability of Tetra-cationic Porphyrins Immobilized on Cellulosic Fabrics. Photochem Photobiol 2020; 97:385-397. [PMID: 33152128 DOI: 10.1111/php.13353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
The thermal stability and photo-bactericidal effect of several tetra-cationic porphyrins and their zinc ion compounds immobilized onto cellulosic fabrics against S. aureus, P. aeruginosa, and E. coli were investigated and compared using a 100 W tungsten lamp. Immobilization of various concentrations of these photosensitizers onto cellulosic fabrics was carried out and characterized by ATR-FT-IR, DRS, TGA, and SEM. Applied cellulosic fabrics with the photosensitizers exhibited remarkable photo-stability, thermal stability, and antimicrobial activity against these studied strains.
Collapse
Affiliation(s)
- Fatemeh Fayyaz
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mehdi Rassa
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Rahmatollah Rahimi
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
6
|
Abstract
Abstract
The increasing resistance against classical antibiotic treatment forces the researchers to develop novel non-toxic antimicrobial agents. The aim of this study was to determine the antimicrobial properties of seven different porphyrins having distinctive hydrophobicity/hydrophilicity: P1 meso-tetra(4-methoxy-phenyl)porphyrin, P2 Zn(II)-meso-5,10,15,20-tetrapyridylporphyrin, P3 meso-tetra(p-tolyl)porphyrin, P4 5,10,15,20-tetraphenylporphyrin; P5 (5,10,15,20-tetraphenylporphinato) dichlorophosphorus(V) chloride, P6 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphyrin-Zn(II) tetrachloride, P7 Zn(II)-5,10,15,20-meso-tetrakis-(4-aminophenyl)porphyrin. The meso-porphyrin derivatives were screened for their antimicrobial activity against six reference strains: Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Pseudomonas aeruginosa ATCC27853 and Candida albicans ATCC 10231. The antimicrobial activity of these samples was evaluated by the agar disk diffusion method and dilution method, with the determination of the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC). The most significant result is provided by the water-soluble P5 manifesting an obvious antimicrobial activity against Streptococcus pyogenes. On the other hand, P6 is a moderately active derivative against Streptococcus pyogenes and Escherichia coli and P7 presents moderate activity against Streptococcus pyogenes and Staphylococcus aureus. All the tested porphyrin bases, presenting hydrophobic character, have no antimicrobial activity under the investigated conditions. The common characteristics of the porphyrins that act as promising antimicrobial agents in the non-irradiated methods are: the cationic nature, the increased hydrophilicity and the presence of both amino functional groups grafted on the porphyrin ring and the coordination with Zn or phosphorus in the inner core.
Collapse
|
7
|
Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019; 175:72-106. [PMID: 31096157 DOI: 10.1016/j.ejmech.2019.04.057] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
Abstract
The multi-drug resistant bacteria have become a serious problem complicating therapies to such a degree that often the term "post-antibiotic era" is applied to describe the situation. The infections with methicillin-resistant S. aureus, vancomycin-resistant E. faecium, third generation cephalosporin-resistant E. coli, third generation cephalosporin-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa have become commonplace. Thus, the new strategies of infection treatment have been searched for, and one of the approaches is based on photodynamic antimicrobial chemotherapy. Photodynamic protocols require the interaction of photosensitizer, molecular oxygen and light. The aim of this review is to provide a comprehensive overview of photodynamic antimicrobial chemotherapy by porphyrinoid photosensitizers. In the first part of the review information on the mechanism of photodynamic action and the mechanism of the bacteria resistance to the photodynamic technique were described. In the second one, it was described porphyrinoids photosensitizers like: porphyrins, chlorins and phthalocyanines useable in photodynamic bacteria inactivation.
Collapse
|
8
|
What an Escherichia coli Mutant Can Teach Us About the Antibacterial Effect of Chlorophyllin. Microorganisms 2019; 7:microorganisms7020059. [PMID: 30813305 PMCID: PMC6406390 DOI: 10.3390/microorganisms7020059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the increasing development of antibiotic resistances in recent years, scientists search intensely for new methods to control bacteria. Photodynamic treatment with porphyrins such as chlorophyll derivatives is one of the most promising methods to handle bacterial infestation, but their use is dependent on illumination and they seem to be more effective against Gram-positive bacteria than against Gram-negatives. In this study, we tested chlorophyllin against three bacterial model strains, the Gram-positive Bacillus subtilis 168, the Gram-negative Escherichia coli DH5α and E. coli strain NR698 which has a deficient outer membrane, simulating a Gram-negative "without" its outer membrane. Illuminated with a standardized light intensity of 12 mW/cm², B. subtilis showed high sensitivity already at low chlorophyllin concentrations (≤10⁵ cfu/mL: ≤0.1 mg/L, 10⁶⁻10⁸ cfu/mL: 0.5 mg/L), whereas E. coli DH5α was less sensitive (≤10⁵ cfu/mL: 2.5 mg/L, 10⁶ cfu/mL: 5 mg/L, 10⁷⁻10⁸ cfu/mL: ineffective at ≤25 mg/L chlorophyllin). E. coli NR698 was almost as sensitive as B. subtilis against chlorophyllin, pointing out that the outer membrane plays a significant role in protection against photodynamic chlorophyllin impacts. Interestingly, E. coli NR698 and B. subtilis can also be inactivated by chlorophyllin in darkness, indicating a second, light-independent mode of action. Thus, chlorophyllin seems to be more than a photosensitizer, and a promising substance for the control of bacteria, which deserves further investigation.
Collapse
|
9
|
Hurst AN, Scarbrough B, Saleh R, Hovey J, Ari F, Goyal S, Chi RJ, Troutman JM, Vivero-Escoto JL. Influence of Cationic meso-Substituted Porphyrins on the Antimicrobial Photodynamic Efficacy and Cell Membrane Interaction in Escherichia coli. Int J Mol Sci 2019; 20:ijms20010134. [PMID: 30609680 PMCID: PMC6337135 DOI: 10.3390/ijms20010134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Photodynamic inactivation (PDI) is a non-antibiotic option for the treatment of infectious diseases. Although Gram-positive bacteria have been shown to be highly susceptible to PDI, the inactivation of Gram-negative bacteria has been more challenging due to the impermeability properties of the outer membrane. In the present study, a series of photosensitizers which contain one to four positive charges (1–4) were used to evaluate the charge influence on the PDI of a Gram-negative bacteria, Escherichia coli (E. coli), and their interaction with the cell membrane. The dose-response PDI results confirm the relevance of the number of positive charges on the porphyrin molecule in the PDI of E. coli. The difference between the Hill coefficients of cationic porphyrins with 1–3 positive charges and the tetra-cationic porphyrin (4) revealed potential variations in their mechanism of inactivation. Fluorescent live-cell microscopy studies showed that cationic porphyrins with 1–3 positive charges bind to the cell membrane of E. coli, but are not internalized. On the contrary, the tetra-cationic porphyrin (4) permeates through the membrane of the cells. The contrast in the interaction of cationic porphyrins with E. coli confirmed that they followed different mechanisms of inactivation. This work helps to have a better understanding of the structure-activity relationship in the efficiency of the PDI process of cationic porphyrins against Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexandra N Hurst
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Beth Scarbrough
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Roa Saleh
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jessica Hovey
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Farideh Ari
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shreya Goyal
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Richard J Chi
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jerry M Troutman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
10
|
Kim SH, Shahbaz HM, Park D, Chun S, Lee W, Oh JW, Lee DU, Park J. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Inactivation efficiency and mechanism of UV-TiO 2 photocatalysis against murine norovirus using a solidified agar matrix. Int J Food Microbiol 2016; 238:256-264. [DOI: 10.1016/j.ijfoodmicro.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 11/22/2022]
|
12
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
13
|
Yoo S, Ghafoor K, Kim S, Sun Y, Kim J, Yang K, Lee DU, Shahbaz H, Park J. Inactivation of pathogenic bacteria inoculated onto a Bacto™agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments. J Appl Microbiol 2015; 119:688-96. [DOI: 10.1111/jam.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/28/2015] [Accepted: 06/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
- S. Yoo
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - K. Ghafoor
- Department of Food Science and Nutrition; King Saud University; Riyadh Saudi Arabia
| | - S. Kim
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - Y.W. Sun
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - J.U. Kim
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - K. Yang
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - D.-U. Lee
- Department of Food Science and Technology; Chung-Ang University; Anseong Korea
| | - H.M. Shahbaz
- Department of Biotechnology; Yonsei University; Seoul Korea
| | - J. Park
- Department of Biotechnology; Yonsei University; Seoul Korea
| |
Collapse
|
14
|
Nguen HQ, Zhdanova KA, Uvarova VS, Bragina NA, Mironov AF, Chupin VV, Shvets VI. Development and characterization of nanoparticles prepared from the mixture of triterpenoids and amphiphilic meso-arylporphirins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015020107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Lopes D, Melo T, Santos N, Rosa L, Alves E, Clara Gomes M, Cunha Â, Neves MGPMS, Faustino MAF, Domingues MRM, Almeida A. Evaluation of the interplay among the charge of porphyrinic photosensitizers, lipid oxidation and photoinactivation efficiency in Escherichia coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:145-53. [PMID: 25463662 DOI: 10.1016/j.jphotobiol.2014.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/10/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022]
Abstract
Photodynamic inactivation (PDI) is a simple and controllable method to destroy microorganisms based on the production of reactive oxygen species (ROS) (e.g., free radicals and singlet oxygen), which irreversibly oxidize microorganism's vital constituents resulting in lethal damage. This process requires the combined action of oxygen, light and a photosensitizer (PS), which absorbs and uses the energy from light to produce ROS. For a better understanding of the photoinactivation process, the knowledge on how some molecular targets are affected by PDI assumes great importance. The aim of this work was to study the relation between the number and position of positive charges on porphyrinic macrocycles and the changes observed on bacterial lipids. For that, five porphyrin derivatives, bearing one to four positive charges, already evaluated as PS on Escherichia coli inactivation, have been tested on lipid extracts from this bacterium, and also on a simple liposome model. The effects were evaluated by the quantification of lipid hydroperoxides and by analysis of the variation of fatty acyl profiles. E. coli suspensions and liposomes were irradiated with white light in the presence of each PS (5.0 μM). Afterwards, total E. coli lipids were extracted and quantified by phosphorus assay. Lipid oxidation on bacteria and on liposomes was quantified by ferrous oxidation in xylenol orange (FOX2 assay) and the analysis of the fatty acid profile was done by gas chromatography (GC). As previously observed for E. coli viability, an overall increase in the lipid hydroperoxides content, depending on the PS charge and on its distribution on the macrocycle, was observed. Analysis of the fatty acid profile has shown a decrease of the unsaturated fatty acids, corroborating the relation between lipid oxidation and PDI efficiency. Bacterial membrane phospholipids are important molecular targets of photoinactivation and the number of charges of the PS molecule, as well as their distribution, have a clear effect on the lipid oxidation and on the efficiency of PDI. The distinct extent of the formation of lipid hydroperoxy derivatives, depending on the PS used, is a good indicator of this process. The FOX2 assay allowed the detection of lipid peroxidation of E. coli membrane after PDI with all the five porphyrins, however, it was not the most appropriated method to quantify the relative lipid oxidation caused by PS with different efficiencies. The fatty acid analysis used to quantify the extent of lipid oxidation by the different PS provided better results. The same results were observed for the liposome model. Consequently, the model system based on liposomes is a fast and simple method that can be used for the screening of the efficiency of new PS, before proceeding with the more complex studies on bacterial models.
Collapse
Affiliation(s)
- Diana Lopes
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno Santos
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Liliana Rosa
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Eliana Alves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - M Clara Gomes
- Organic Chemistry Unit, Department of Chemistry and QOPNA University of Aveiro, Aveiro, Portugal
| | - Ângela Cunha
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria G P M S Neves
- Organic Chemistry Unit, Department of Chemistry and QOPNA University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- Organic Chemistry Unit, Department of Chemistry and QOPNA University of Aveiro, Aveiro, Portugal.
| | - M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
16
|
Mamone L, Di Venosa G, Gándara L, Sáenz D, Vallecorsa P, Schickinger S, Rossetti M, Batlle A, Buzzola F, Casas A. Photodynamic inactivation of Gram-positive bacteria employing natural resources. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:80-9. [DOI: 10.1016/j.jphotobiol.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
17
|
Liu L, Chen J, Wang S. Flexible antibacterial film deposited with polythiophene-porphyrin composite. Adv Healthc Mater 2013; 2:1582-5. [PMID: 23703813 DOI: 10.1002/adhm.201300106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 01/11/2023]
Abstract
A flexible and transparent anti-bacterial film is prepared by depositing polyterthiophene incorporating porphyrin onto the poly(ethylene terephthalate) sheet by a simple and rapid oxidation polymerization method. The film can generate singlet oxygen by FRET from polyterthiophene to porphyrin to effectively kill the adsorbed bacteria under white light.
Collapse
Affiliation(s)
- Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | |
Collapse
|
18
|
Asok A, Arshad E, Jasmin C, Pai SS, Singh ISB, Mohandas A, Anas A. Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microb Biotechnol 2011; 5:59-68. [PMID: 21951316 PMCID: PMC3815272 DOI: 10.1111/j.1751-7915.2011.00297.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of > 50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large.
Collapse
Affiliation(s)
- Aparna Asok
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 682016, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Mendes S, Camacho F, Silva T, Calado CRC, Serra AC, Gonsalves AMDR, Roxo-Rosa M. A nonionic porphyrin as a noninterfering DNA antibacterial agent. Photochem Photobiol 2011; 87:1395-404. [PMID: 21834867 DOI: 10.1111/j.1751-1097.2011.00984.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increasing interest in clinical bacterial photodynamic inactivation has led to the search for photosensitizers with higher bactericidal efficiency and less side effects on the surrounding tissues. We present a novel nonionic porphyrin, the 5,10,15-tris(2,6-dichlorophenyl)-20-[4-N-(6-amino-hexyl)sulfonamido)phenyl]-porphyrin (ACS769F4) with substantial improvements in the efficiency of nonionic sensitizers. This porphyrin causes eradication of both Escherichia coli and Staphylococcus aureus by the photodynamic effect but in higher concentrations compared with 5,10,15,20-tetrakis (4-N,N,N-trimethylammoniumphenyl)-porphyrin p-tosylate (TTAP(4+)), a known bactericidal tetracationic porphyrin. More important, under such conditions, ACS769F4 proved to be harmless to two mammalian cells lines (human embryonic and baby hamster kidney), causing no reduction in their viability or negative impact on their cytoskeleton, despite its accumulation in cellular structures. On the contrary, TTAP(4+) is shown to accumulate in the nucleus of mammalian cells, in association to DNA, causing chromatin condensation after exposure to light. Furthermore, dark incubation with TTAP(4+) was shown to have a deleterious effect on the microtubule network. Based on its bactericidal efficiency, also observed without exposure to light, and on the low tendency to be harmful or genotoxic to mammalian cells, ACS769F4 should be looked at as an interesting photosensitizer to be evaluated for clinical purposes.
Collapse
Affiliation(s)
- Sónia Mendes
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Gao J, Wang Z, Wang J, Jin X, Guo Y, Li K, Li Y, Kang P. Spectroscopic studies on interaction and sonodynamic damage of metallochlorophyllin (Chl-M (M=Fe, Zn and Cu)) to protein under ultrasonic irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:849-857. [PMID: 21680231 DOI: 10.1016/j.saa.2011.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 05/30/2023]
Abstract
In this paper, the chlorophyll derivatives, metallochlorophyllin (Chl-M) (M=Fe, Zn and Cu) including chlorophyllin iron (Chl-Fe), chlorophyllin zinc (Chl-Zn) and chlorophyllin copper (Chl-Cu), were adopted as sonosensitizers to combine with ultrasonic irradiation, and the sonodynamic damage of bovine serum albumin (BSA) was investigated. At first, the interaction of Chl-M with BSA was studied by fluorescence spectroscopy. The results show that the quenching mechanism belongs to a static process and among them the affinity of Chl-Fe to BSA is the most obvious. Then, some influence factors on the sonodynamic damage of BSA molecules in the presence of Chl-M under ultrasonic irradiation were also studied. Synchronous fluorescence spectra show that the binding and damage sites of Chl-M to BSA molecule are mainly on the tryptophan (Trp) residues. The generation of ROS in Chl-M sonodynamic process is estimated by the method of Oxidation-Extraction Spectrometry (OEP). This paper may offer some valuable references for the study of the sonodynamic activity of Chl-M and the effect of the central metals. Synchronously, it contributes to the application of Chl-M in SDT for tumor treatment.
Collapse
Affiliation(s)
- Jingqun Gao
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Arrojado C, Pereira C, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A, Calado R, Gomes NCM, Almeida A. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochem Photobiol Sci 2011; 10:1691-700. [PMID: 21826363 DOI: 10.1039/c1pp05129f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish infections in aquaculture systems, but it is clearly more difficult to inactivate the complex natural bacterial communities of aquaculture waters than pure cultures of bacteria isolated from aquaculture systems. Considering the use of aPDT to inactivate pathogenic microbial community of aquaculture systems the monitoring of microorganisms is needed in order to select the most effective conditions.
Collapse
Affiliation(s)
- Cátia Arrojado
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xing C, Xu Q, Tang H, Liu L, Wang S. Conjugated Polymer/Porphyrin Complexes for Efficient Energy Transfer and Improving Light-Activated Antibacterial Activity. J Am Chem Soc 2009; 131:13117-24. [DOI: 10.1021/ja904492x] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chengfen Xing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Qingling Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Hongwei Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
23
|
Almeida A, Cunha Â, Gomes NC, Alves E, Costa L, Faustino MA. Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 2009; 7:268-313. [PMID: 19841715 PMCID: PMC2763101 DOI: 10.3390/md7030268] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 12/11/2022] Open
Abstract
Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy.
Collapse
Affiliation(s)
- Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mails: (A.C.); (N.C.M.G.); (E.A.); (L.C.)
| | - Ângela Cunha
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mails: (A.C.); (N.C.M.G.); (E.A.); (L.C.)
| | - Newton C.M. Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mails: (A.C.); (N.C.M.G.); (E.A.); (L.C.)
| | - Eliana Alves
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mails: (A.C.); (N.C.M.G.); (E.A.); (L.C.)
| | - Liliana Costa
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mails: (A.C.); (N.C.M.G.); (E.A.); (L.C.)
| | - Maria A.F. Faustino
- QOPNA and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal; E-Mail:
| |
Collapse
|
24
|
Alves E, Costa L, Carvalho CMB, Tomé JPC, Faustino MA, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A, Almeida A. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 2009; 9:70. [PMID: 19368706 PMCID: PMC2672088 DOI: 10.1186/1471-2180-9-70] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. RESULTS Bacterial suspension (10(7) CFU mL(-1)) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 microM) were exposed to white light (40 W m(-2)) for a total light dose of 64.8 J cm(-2). The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 microM with a light fluence of 64.8 J cm(-2), leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. CONCLUSION The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m(-2)) means that the photodynamic approach can be applied to wastewater treatment under natural light conditions which makes this technology cheap and feasible in terms of the light source.
Collapse
Affiliation(s)
- Eliana Alves
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Funes MD, Caminos DA, Alvarez MG, Fungo F, Otero LA, Durantini EN. Photodynamic properties and photoantimicrobial action of electrochemically generated porphyrin polymeric films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:902-908. [PMID: 19245034 DOI: 10.1021/es802450b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spectroscopic and photodynamic properties of polymeric films bearing porphyrin units have been studied in both solution containing photooxidizable substrates and in vitro on Escherichia coli and Candida albicans microorganisms. The films were formed by electrochemical polymerization of 5,10,15,20-tetra(4-N,N-diphenylaminophenyl)porphyrin (H2P-film) and its complex with Pd(II) (PdP-film) on optically transparent indium tin oxide (ITO) electrodes. Absorption spectroscopic studies show the characteristic Soret and Q bands of the porphyrin in the visible region and a band at approximately 350 nm corresponding to the tetraphenylbenzidine units. Upon excitation, the H2P-film exhibits two bands of fluorescence emission from porphyrin, while it is not detected using PdP-film. The singlet molecular oxygen, O2(1Deltag), productions of these surfaces were evaluated using 9,10-dimethylanthracene in N,N-dimethylformamide. Also, the photodynamic activity was compared in solutions of L-tryptophan. Under these conditions, oxidation of these substrates takes place indicating an efficient photodynamic action of both polymeric films. In vitro investigations show that these films produce photosensitized inactivation of microbial cells in aqueous suspensions. These films exhibit a photosensitizing activity causing a approximately 3 log decrease of E. coil and approximately 2.5 log of C. albicans cellular survival after 30 min of irradiation with visible light. The photodynamic effect of the surfaces was also tested by growth delay experiments. The results indicate that porphyrins immobilized on electropolymeric films are interesting and versatile photodynamic surfaces to inactivate microorganisms in liquid suspensions.
Collapse
Affiliation(s)
- Matías D Funes
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Krouit M, Granet R, Krausz P. Photobactericidal plastic films based on cellulose esterified by chloroacetate and a cationic porphyrin. Bioorg Med Chem 2008; 16:10091-7. [DOI: 10.1016/j.bmc.2008.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/11/2008] [Accepted: 10/02/2008] [Indexed: 11/15/2022]
|
27
|
Caminos DA, Spesia MB, Pons P, Durantini EN. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 2008; 7:1071-8. [PMID: 18754054 DOI: 10.1039/b804965c] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanistic aspects of Escherichia coli photodynamic inactivation (PDI) have been investigated in bacteria treated with 5,10,15-tris[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-(4-trifluoromethylphenyl)porphyrin iodide (A3B3+) and visible light. The photosensitization activity of A3B3+ porphyrin was compared with that of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP4+), which is an active tetracationic sensitizer to eradicate bacteria. The PDI damages on plasmid and genomic DNA were analyzed by electrophoresis. DNA photocleavage was observed after a long period of irradiation, when the bacterial cells are largely photoinactivated. Transmission electron microscopy (TEM) revealed structural changes with appearance of low density areas into the cells and irregularities in cell barriers, which could affect the normal cell membrane functionality. Also, damages on the cell-wall were not detected by scanning electron microscopy (SEM) and release of intracellular biopolymers was not found after PDI. These results indicate that the photodynamic activity of these cationic porphyrins produces DNA photodamage after a long period of irradiation. Therefore, an interference with membrane functions could be the main cause of E. coli photoinactivation upon short PDI treatments.
Collapse
Affiliation(s)
- Daniel A Caminos
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|