1
|
Li X, Kumar S, Brenneman KV, Anderson TJC. Bulk segregant linkage mapping for rodent and human malaria parasites. Parasitol Int 2022; 91:102653. [PMID: 36007706 DOI: 10.1016/j.parint.2022.102653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.
Collapse
Affiliation(s)
- Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Tim J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Chitnumsub P, Jaruwat A, Talawanich Y, Noytanom K, Liwnaree B, Poen S, Yuthavong Y. The structure of Plasmodium falciparum hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase reveals the basis of sulfa resistance. FEBS J 2020; 287:3273-3297. [PMID: 31883412 DOI: 10.1111/febs.15196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022]
Abstract
The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.
Collapse
Affiliation(s)
- Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuwadee Talawanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Krittikar Noytanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Benjamas Liwnaree
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sinothai Poen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
3
|
Oguike MC, Falade CO, Shu E, Enato IG, Watila I, Baba ES, Bruce J, Webster J, Hamade P, Meek S, Chandramohan D, Sutherland CJ, Warhurst D, Roper C. Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:220-229. [PMID: 27821281 PMCID: PMC5094156 DOI: 10.1016/j.ijpddr.2016.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/12/2016] [Indexed: 11/19/2022]
Abstract
There are few published reports of mutations in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes in P. falciparum populations in Nigeria, but one previous study has recorded a novel dhps mutation at codon 431 among infections imported to the United Kingdom from Nigeria. To assess how widespread this mutation is among parasites in different parts of the country and consequently fill the gap in sulfadoxine-pyrimethamine (SP) resistance data in Nigeria, we retrospectively analysed 1000 filter paper blood spots collected in surveys of pregnant women and children with uncomplicated falciparum malaria between 2003 and 2015 from four sites in the south and north. Genomic DNA was extracted from filter paper blood spots and placental impressions. Point mutations at codons 16, 50, 51, 59, 108, 140 and 164 of the dhfr gene and codons 431, 436, 437, 540, 581 and 613 of the dhps gene were evaluated by nested PCR amplification followed by direct sequencing. The distribution of the dhps-431V mutation was widespread throughout Nigeria with the highest prevalence in Enugu (46%). In Ibadan where we had sequential sampling, its prevalence increased from 0% to 6.5% between 2003 and 2008. Although there were various combinations of dhps mutations with 431V, the combination 431V + 436A + 437G+581G+613S was the most common. All these observations support the view that dhps-431V is on the increase. In addition, P. falciparum DHPS crystal structure modelling shows that the change from Isoleucine to Valine (dhps-431V) could alter the effects of both S436A/F and A437G, which closely follow the 2nd β-strand. Consequently, it is now a research priority to assess the implications of dhps-VAGKGS mutant haplotype on continuing use of SP in seasonal malaria chemoprevention (SMC) and intermittent preventive treatment in pregnancy (IPTp). Our data also provides surveillance data for SP resistance markers in Nigeria between 2003 and 2015. We present data on dhps and dhfr mutations in P. falciparum populations in Nigeria. Increased prevalence of I431V mutation was seen between 2003 and 2015 from 0 to 36%. The 431V + 436A + 437G + 581G + 613S was the most common with dhps-431V mutation. Crystal structure modelling of Pf DHPS shows that 431Vcould alter S436A and A437G.
Collapse
Affiliation(s)
- Mary C Oguike
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elvis Shu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Izehiuwa G Enato
- Department of Child Health, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Ismaila Watila
- Department of Paediatrics, Specialist Hospital Maiduguri, Borno State, Nigeria
| | - Ebenezer S Baba
- Malaria Consortium, Regional Office for Africa, Kampala, Uganda
| | - Jane Bruce
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jayne Webster
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Daniel Chandramohan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Warhurst
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cally Roper
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Increasing prevalence of a novel triple-mutant dihydropteroate synthase genotype in Plasmodium falciparum in western Kenya. Antimicrob Agents Chemother 2015; 59:3995-4002. [PMID: 25896703 DOI: 10.1128/aac.04961-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
The molecular basis of sulfadoxine-pyrimethamine (SP) resistance lies in a combination of single-nucleotide polymorphisms (SNPs) in two genes coding for Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. The continued use of SP for intermittent preventive treatment in pregnant women in many African countries, despite SP's discontinuation as a first-line antimalarial treatment option due to high levels of drug resistance, may further increase the prevalence of SP-resistant parasites and/or lead to the selection of new mutations. An antimalarial drug resistance surveillance study was conducted in western Kenya between 2010 and 2013. A total of 203 clinical samples from children with uncomplicated malaria were genotyped for SNPs associated with SP resistance. The prevalence of the triple-mutant Pfdhfr C50 I51R59N108: I164 genotype and the double-mutant Pfdhps S436 G437E540: A581A613 genotype was high. Two triple-mutant Pfdhps genotypes, S436 G437E540G581: A613 and H436G437E540: A581A613, were found, with the latter thus far being uniquely found in western Kenya. The prevalence of the S436 G437E540G581: A613 genotype was low. However, a steady increase in the prevalence of the Pfdhps triple-mutant H436G437E540: A581A613 genotype has been observed since its appearance in early 2000. Isolates with these genotypes shared substantial microsatellite haplotypes with the most common double-mutant allele, suggesting that this triple-mutant allele may have evolved locally. Overall, these findings show that the prevalence of the H436G437E540: A581A613 triple mutant may be increasing in this population and could compromise the efficacy of SP for intermittent preventive treatment in pregnant women if it increases the resistance threshold further.
Collapse
|
5
|
Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel) 2014; 3:1-28. [PMID: 27025730 PMCID: PMC4790348 DOI: 10.3390/antibiotics3010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The need for new antimicrobials is great in face of a growing pool of resistant pathogenic organisms. This review will address the potential for antimicrobial therapy based on polypharmacological activities within the currently utilized bacterial biosynthetic folate pathway. The folate metabolic pathway leads to synthesis of required precursors for cellular function and contains a critical node, dihydrofolate reductase (DHFR), which is shared between prokaryotes and eukaryotes. The DHFR enzyme is currently targeted by methotrexate in anti-cancer therapies, by trimethoprim for antibacterial uses, and by pyrimethamine for anti-protozoal applications. An additional anti-folate target is dihyropteroate synthase (DHPS), which is unique to prokaryotes as they cannot acquire folate through dietary means. It has been demonstrated as a primary target for the longest standing antibiotic class, the sulfonamides, which act synergistically with DHFR inhibitors. Investigations have revealed most DHPS enzymes possess the ability to utilize sulfa drugs metabolically, producing alternate products that presumably inhibit downstream enzymes requiring the produced dihydropteroate. Recent work has established an off-target effect of sulfonamide antibiotics on a eukaryotic enzyme, sepiapterin reductase, causing alterations in neurotransmitter synthesis. Given that inhibitors of both DHFR and DHPS are designed to mimic their cognate substrate, which contain shared substructures, it is reasonable to expect such “off-target” effects. These inhibitors are also likely to interact with the enzymatic neighbors in the folate pathway that bind products of the DHFR or DHPS enzymes and/or substrates of similar substructure. Computational studies designed to assess polypharmacology reiterate these conclusions. This leads to hypotheses exploring the vast utility of multiple members of the folate pathway for modulating cellular metabolism, and includes an appealing capacity for prokaryotic-specific polypharmacology for antimicrobial applications.
Collapse
|
6
|
Folate metabolism in human malaria parasites—75 years on. Mol Biochem Parasitol 2013; 188:63-77. [DOI: 10.1016/j.molbiopara.2013.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/21/2022]
|
7
|
Abstract
Enzymes are often excellent drug targets. Yet drug pressure on an enzyme target often fosters the rise of cells with resistance-conferring mutations, some of which may compromise fitness and others that compensate to restore fitness. This review presents, first, a structural analysis of a diverse group of wild-type and mutant enzyme targets and, second, an in-depth analysis of five diverse targets to elucidate a broader perspective of the effects of resistance-conferring mutations on protein or organismal fitness. The structural analysis reveals that resistance-conferring mutations may introduce steric hindrance or eliminate critical interactions, as expected, but that they may also have indirect effects such as altering protein dynamics and enzyme kinetics. The structure-based development of the latest generation of inhibitors targeting HIV reverse transcriptase, P. falciparum and S. aureus dihydrofolate reductase, neuraminidase, and epithelial growth factor receptor (EGFR) tyrosine kinase, is highlighted to emphasize lessons that may be applied to future drug discovery to overcome mutation-induced resistance. Successful next-generation drugs tend to be more flexible and exploit a greater number of interactions mimicking those of the substrate with conserved residues.
Collapse
Affiliation(s)
- Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.
| |
Collapse
|
8
|
Novel K540N mutation in Plasmodium falciparum dihydropteroate synthetase confers a lower level of sulfa drug resistance than does a K540E mutation. Antimicrob Agents Chemother 2011; 55:2481-2. [PMID: 21343464 DOI: 10.1128/aac.01394-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfadoxine (SDX) and sulfamethoxazole (SMX) each inhibit the Plasmodium falciparum dihydropteroate synthetase (PfDHPS), and certain point mutations in this enzyme yield the drug-resistant parasite. Using a simple Escherichia coli model system, we describe here the effect of the recently reported novel K540N mutation in PfDHPS on the level of SDX/SMX resistance. The survival rate of the transformed E. coli (DHPS-deficient strain) under different SDX or SMX concentrations revealed that the K540N mutation confers a lower level of drug resistance than its contemporary K540E mutation. Further, SMX was more effective than SDX in the E. coli system.
Collapse
|
9
|
Müller IB, Hyde JE. Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol 2010; 5:1857-73. [DOI: 10.2217/fmb.10.136] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Malaria represents one of the most serious threats to human health worldwide, and preventing and curing this parasitic disease still depends predominantly on the administration of a small number of drugs whose efficacy is continually threatened and eroded by the emergence of drug-resistant parasite populations. This has an enormous impact on the mortality and morbidity resulting from malaria infection, especially in sub-Saharan Africa, where the lethal human parasite species Plasmodium falciparum accounts for approximately 90% of deaths recorded globally. Successful treatment of uncomplicated malaria is now highly dependent on artemisinin-based combination therapies. However, the first cases of artemisinin-resistant field isolates have been reported recently and potential replacement antimalarials are only in the developmental stages. Here, we summarize recent progress in tackling the problem of parasite resistance and discuss the underlying molecular mechanisms that confer resistance to current antimalarial agents as far as they are known, understanding of which should assist in the rational development of new drugs and the more effective deployment of older ones.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John E Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
10
|
Probing the roles of non-homologous insertions in the N-terminal domain of Plasmodium falciparum hydroxymethylpterin pyrophosphokinase–dihydropteroate synthase. Mol Biochem Parasitol 2009; 168:135-42. [DOI: 10.1016/j.molbiopara.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
|
11
|
Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int 2009; 58:201-9. [PMID: 19393762 DOI: 10.1016/j.parint.2009.04.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/25/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
Abstract
Worldwide spread of Plasmodium falciparum drug resistance to conventional antimalarials, chloroquine and sulfadoxine/pyrimethamine, has been imposing a serious public health problem in many endemic regions. Recent discovery of drug resistance-associated genes, pfcrt, pfmdr1, dhfr, and dhps, and applications of microsatellite markers flanking the genes have revealed the evolution of parasite resistance to these antimalarials and the geographical spread of drug resistance. Here, we review our recent knowledge of the evolution and spread of parasite resistance to chloroquine and sulfadoxine/pyrimethamine. In both antimalarials, resistance appears to be largely explained by the invasion of limited resistant lineages to many endemic regions. However, multiple, indigenous evolutionary origins of resistant lineages have also been demonstrated. Further molecular evolutionary and population genetic approaches will greatly facilitate our understanding of the evolution and spread of parasite drug resistance, and will contribute to developing strategies for better control of malaria.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, School of Medicine, 9-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | |
Collapse
|
12
|
Garg S, Saxena V, Kanchan S, Sharma P, Mahajan S, Kochar D, Das A. Novel point mutations in sulfadoxine resistance genes of Plasmodium falciparum from India. Acta Trop 2009; 110:75-9. [PMID: 19283899 DOI: 10.1016/j.actatropica.2009.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Point mutations in the dhfr and dhps genes of Plasmodium falciparum are associated with pyrimethamine and sulfadoxine resistance respectively. In this study we have analyzed these genes from Bikaner (situated in North-West region of India), where both uncomplicated and severe manifestations of P. falciparum malaria are seen. A majority of isolates showed double mutant allele for DHFR. In contrast, the only reported mutation present in DHPS was A437G in few isolates. In addition, three novel non-synonymous mutations were observed in the PfDHPS from this region viz., S587F, N666K and C668W. The mutations at the 666 and 668 codon seem to form a bend in the big loop region of the DHPS enzyme and may affect the binding of the drug to the enzyme. Molecular docking of sulfadoxine to this mutated structure indicates reduction in its binding affinity to this enzyme.
Collapse
|
13
|
Joubert Y, Joubert F. A structural annotation resource for the selection of putative target proteins in the malaria parasite. Malar J 2008; 7:90. [PMID: 18500983 PMCID: PMC2413252 DOI: 10.1186/1475-2875-7-90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in Plasmodium falciparum proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of P. falciparum proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies. Methods An integrated structural annotation system was developed and applied to P. falciparum, Plasmodium vivax and Plasmodium yoelii. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features. Results The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features [1]. Analysis of features in the P. falciparum proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread. Conclusion A series of P. falciparum protein targets for experimental structure determination, comparative modelling and in silico docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features.
Collapse
Affiliation(s)
- Yolandi Joubert
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
14
|
Abstract
Despite intensive research extending back to the 1930s, when the first synthetic antimalarial drugs made their appearance, the repertoire of clinically licensed formulations remains very limited. Moreover, widespread and increasing resistance to these drugs contributes enormously to the difficulties in controlling malaria, posing considerable intellectual, technical and humanitarian challenges. A detailed understanding of the molecular mechanisms underlying resistance to these agents is emerging that should permit new drugs to be rationally developed and older ones to be engineered to regain their efficacy. This review summarizes recent progress in analysing the causes of resistance to the major antimalarial drugs and its spread.
Collapse
Affiliation(s)
- John E Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, UK.
| |
Collapse
|
15
|
Schlitzer M. Malaria Chemotherapeutics Part I: History of Antimalarial Drug Development, Currently Used Therapeutics, and Drugs in Clinical Development. ChemMedChem 2007; 2:944-86. [PMID: 17530725 DOI: 10.1002/cmdc.200600240] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since ancient times, humankind has had to struggle against the persistent onslaught of pathogenic microorganisms. Nowadays, malaria is still the most important infectious disease worldwide. Considerable success in gaining control over malaria was achieved in the 1950s and 60s through landscaping measures, vector control with the insecticide DDT, and the widespread administration of chloroquine, the most important antimalarial agent ever. In the late 1960s, the final victory over malaria was believed to be within reach. However, the parasites could not be eradicated because they developed resistance against the most widely used and affordable drugs of that time. Today, cases of malaria infections are on the rise and have reached record numbers. This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy. The present knowledge regarding their mode of action and the mechanisms of resistance are explained, as are the attempts made by numerous research groups to overcome the resistance problem within classes of existing drugs and in some novel classes. Finally, this review covers all classes of antimalarials for which at least one drug candidate is in clinical development. Antimalarial agents that are solely in early development stages will be addressed in a separate review.
Collapse
Affiliation(s)
- Martin Schlitzer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
| |
Collapse
|
16
|
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space? Malar J 2006; 5:110. [PMID: 17112376 PMCID: PMC1665468 DOI: 10.1186/1475-2875-5-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022] Open
Abstract
The organization and mining of malaria genomic and post-genomic data is important to significantly increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should, therefore, be as reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria genomic and post-genomic data were examined: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Recent progress towards a grid-enabled chemogenomic knowledge space is discussed.
Collapse
|