1
|
Venkat Shivaji Ramarao EV, Solanke JN, Chatterjee R, Gat S, Dhayalan V, Dandela R. Metal-free efficient synthesis of aryl sulfonamides from N-hydroxy sulfonamide and amines. Org Biomol Chem 2024; 22:5918-5923. [PMID: 38994682 DOI: 10.1039/d4ob00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A simple and novel approach has been developed for the synthesis of sulfonamides from N-hydroxy sulfonamide. Notably, the iodine-tert-butyl hydroperoxide (TBHP) system efficiently promoted the sulfonylation reactions of N-hydroxy sulfonamides and amines via the oxidative cleavage of an S-N bond. A variety of aryl sulfonamides were prepared in moderate to good yields using readily available starting materials and the biomass-derived 2-MeTHF solvent. The present method has the advantages of using metal-free reagents, an eco-friendly medium, cost-effective reagents, wide substrate scope, and mild conditions.
Collapse
Affiliation(s)
- E V Venkat Shivaji Ramarao
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Jayshree Nandkumar Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Savita Gat
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
2
|
Gantner ME, Prada Gori DN, Llanos MA, Talevi A, Angeli A, Vullo D, Supuran CT, Gavernet L. Identification of New Carbonic Anhydrase VII Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2022; 62:4760-4770. [PMID: 36126250 DOI: 10.1021/acs.jcim.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human carbonic anhydrase VII (hCA VII) constitutes a promising molecular target for the treatment of epileptic seizures and other central nervous system disorders due to its almost exclusive expression in neurons. Achieving isoform selectivity is one of the main challenges for the discovery of new hCA inhibitors, since nonspecific inhibition may lead to tolerance and side effects. In the present work, we report the development of a molecular docking protocol based on AutoDock4Zn for the search of new hCA VII inhibitors by virtual screening. The docking protocol was applied to the screening of two sets of compounds: a ZINC15 subset of sulfur-containing structures and an in-house library consisting of synthetic and commercial candidates (including approved drugs). Five compounds were selected from the first screening campaign and three from the second one, and they were tested in vitro against the enzyme. Among the eight selected structures, four showed Ki values in the low nanomolar range. These confirmed hits include three approved drugs: meloxicam, piroxicam, and nitrofurantoin, which also showed good selectivity for hCA VII versus hCA II.
Collapse
Affiliation(s)
- Melisa E Gantner
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Denis N Prada Gori
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Manuel A Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| |
Collapse
|
3
|
Amira A, K'tir H, Aouf Z, Khaldi T, Bentoumi H, Khattabi L, Zerrouki R, Ibrahim‐Ouali M, Aouf N. One‐Pot Microwave‐Assisted Synthesis, in Vitro Anti‐inflammatory Evaluation and Computer‐Aided Molecular Design of Novel Sulfamide‐Containing Bisphosphonates Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aϊcha Amira
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group Badji Mokhtar University -Annaba, Box 12 Annaba 23000 Algeria
- National Higher School of Mines and Metallurgy-Amar Laskri- Annaba Algeria
| | - Hacène K'tir
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group Badji Mokhtar University -Annaba, Box 12 Annaba 23000 Algeria
- Medical Sciences Faculty Badji-Mokhtar University -Annaba. Box 12 Annaba 23000 Algeria
| | - Zineb Aouf
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group Badji Mokhtar University -Annaba, Box 12 Annaba 23000 Algeria
| | - Taha Khaldi
- National Center of Biotechnology Research Constantine (CRBt) Ali Mendjli Nouvelle Ville UV 03 BP E73 Constantine 25016 Algeria
| | - Houria Bentoumi
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group Badji Mokhtar University -Annaba, Box 12 Annaba 23000 Algeria
| | - Latifa Khattabi
- Nature and Life Sciences Faculty Brothers Mentouri University, Constantine 1 BP 325 Route de Ain El Bey Constantine 25017 Algeria
| | - Rachida Zerrouki
- Limoges University PEIRENE Laboratory, SylvaLim Group 123 Avenue Albert Thomas Limoges cedex 87060 France
| | - Malika Ibrahim‐Ouali
- Aix Marseille University, CNRS Centrale Marseille, iSm2 F-13397 Marseille France
| | - Nour‐Eddine Aouf
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group Badji Mokhtar University -Annaba, Box 12 Annaba 23000 Algeria
| |
Collapse
|
4
|
Llanos MA, Sbaraglini ML, Villalba ML, Ruiz MD, Carrillo C, Alba Soto C, Talevi A, Angeli A, Parkkila S, Supuran CT, Gavernet L. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:21-30. [PMID: 31619095 PMCID: PMC6807911 DOI: 10.1080/14756366.2019.1677638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Manuel A. Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Villalba
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María D. Ruiz
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Catalina Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Gao Y, Zhang X, Laishram RD, Chen J, Li K, Zhang K, Zeng G, Fan B. Cobalt‐Catalyzed Transfer Hydrogenation of α‐Ketoesters and
N
‐Cyclicsulfonylimides Using H
2
O as Hydrogen Source. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Gao
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Xuexin Zhang
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Ronibala Devi Laishram
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Jingchao Chen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Kangkui Li
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Keyang Zhang
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Guangzhi Zeng
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Baomin Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| |
Collapse
|
6
|
|
7
|
New organotin(IV) chlorides derived from N-(2-hydroxyphenyl)aryloxy sulfamates. Synthesis, characterization and DSC investigation. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Palestro PH, Enrique N, Goicoechea S, Villalba ML, Sabatier LL, Martin P, Milesi V, Bruno Blanch LE, Gavernet L. Searching for New Leads To Treat Epilepsy: Target-Based Virtual Screening for the Discovery of Anticonvulsant Agents. J Chem Inf Model 2018; 58:1331-1342. [PMID: 29870230 DOI: 10.1021/acs.jcim.7b00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp, and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by the maximal electroshock seizure (MES) test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan, and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N, N'-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin, and N, N'-diphenethylsulfamide.
Collapse
Affiliation(s)
- Pablo H Palestro
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Nicolas Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Sofia Goicoechea
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Maria L Villalba
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Laureano L Sabatier
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Pedro Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Veronica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luis E Bruno Blanch
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| |
Collapse
|
9
|
Gantner ME, Peroni RN, Morales JF, Villalba ML, Ruiz ME, Talevi A. Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage. J Chem Inf Model 2017; 57:1868-1880. [DOI: 10.1021/acs.jcim.7b00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Melisa E. Gantner
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - Roxana N. Peroni
- Instituto
de Investigaciones Farmacológicas (ININFA UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín
956 5°, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan F. Morales
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - María L. Villalba
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - María E. Ruiz
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| |
Collapse
|
10
|
Oluwaseye A, Uzairu A, A. Shallangwa G, E. Abechi S. A novel QSAR model for designing, evaluating,and predicting the anti-MES activity of new 1H-pyrazole-5-carboxylic acid derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.304584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Villalba ML, Enrique AV, Higgs J, Castaño RA, Goicoechea S, Taborda FD, Gavernet L, Lick ID, Marder M, Bruno Blanch LE. Novel sulfamides and sulfamates derived from amino esters: Synthetic studies and anticonvulsant activity. Eur J Pharmacol 2016; 774:55-63. [DOI: 10.1016/j.ejphar.2016.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
|
12
|
Suthagar K, Watson AJ, Wilkinson BL, Fairbanks AJ. Synthesis of arabinose glycosyl sulfamides as potential inhibitors of mycobacterial cell wall biosynthesis. Eur J Med Chem 2015; 102:153-66. [DOI: 10.1016/j.ejmech.2015.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
13
|
Aksu K, Topal F, Gulcin İ, Tümer F, Göksu S. Acetylcholinesterase Inhibitory and Antioxidant Activities of Novel Symmetric Sulfamides Derived from Phenethylamines. Arch Pharm (Weinheim) 2015; 348:446-55. [DOI: 10.1002/ardp.201500035] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Kadir Aksu
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| | - Fevzi Topal
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| | - İlhami Gulcin
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
- Fetal Programming of Diseases Research Chair; Zoology Department; College of Science; King Saud University; Riyadh Saudi Arabia
| | - Ferhan Tümer
- Department of Chemistry; Faculty of Science and Arts; Sutcu Imam University; Kahramanmaras Turkey
| | - Süleyman Göksu
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| |
Collapse
|
14
|
Ghiasi M, Kamalinahad S. Conformational Analysis of Topiramate and Related Anion in the Solution and Interaction Between the Most Stable Conformer of Topiramate with Active Center of Carbonic Anhydrase Enzyme. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1009090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Göksu S, Naderi A, Akbaba Y, Kalın P, Akıncıoğlu A, Gülçin İ, Durdagi S, Salmas RE. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg Chem 2014; 56:75-82. [DOI: 10.1016/j.bioorg.2014.07.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
|
16
|
Smith GR, Brenneman DE, Zhang Y, Du Y, Reitz AB. Small-molecule anticonvulsant agents with potent in vitro neuroprotection and favorable drug-like properties. J Mol Neurosci 2014; 52:446-58. [PMID: 24277343 PMCID: PMC3945118 DOI: 10.1007/s12031-013-0180-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022]
Abstract
Severe seizure activity is associated with reoccurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention with these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. We have optimized a series of small molecules for neuroprotective and anticonvulsant activity as well as altered their physical properties to address potential metabolic liabilities, to improve CNS penetration, and to prolong the duration of action in vivo. Utilizing phenotypic screening of hippocampal cultures with nutrient medium depleted of antioxidants as a disease model, cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented. Modifications to our previously reported proof of concept compounds have resulted in a lead which has full neuroprotective action at <1 nM and antiseizure activity across six animal models including the kindled rat and displays excellent pharmacokinetics including high exposure to the brain. These modifications have also eliminated the requirement for a chiral molecule, removing the possibility of racemization and making large-scale synthesis more easily accessible. These studies strengthen our earlier findings which indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity which also possesses favorable CNS-active drug properties in vitro and in vivo.
Collapse
Affiliation(s)
- Garry R Smith
- Fox Chase Chemical Diversity Center, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA,
| | | | | | | | | |
Collapse
|
17
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|
18
|
McComsey DF, Smith-Swintosky VL, Parker MH, Brenneman DE, Malatynska E, White HS, Klein BD, Wilcox KS, Milewski ME, Herb M, Finley MFA, Liu Y, Lubin ML, Qin N, Reitz AB, Maryanoff BE. Novel, broad-spectrum anticonvulsants containing a sulfamide group: pharmacological properties of (S)-N-[(6-chloro-2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]sulfamide (JNJ-26489112). J Med Chem 2013; 56:9019-30. [PMID: 24205976 DOI: 10.1021/jm400894u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures. Mechanistically, 4 inhibited voltage-gated Na(+) channels and N-type Ca(2+) channels and was effective as a K(+) channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies.
Collapse
Affiliation(s)
- David F McComsey
- Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson , Spring House, Pennsylvania 19477-0776, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dragostin OM, Lupascu F, Vasile C, Mares M, Nastasa V, Moraru RF, Pieptu D, Profire L. Synthesis and biological evaluation of new 2-azetidinones with sulfonamide structures. Molecules 2013; 18:4140-57. [PMID: 23567362 PMCID: PMC6270540 DOI: 10.3390/molecules18044140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/26/2013] [Accepted: 04/03/2013] [Indexed: 11/25/2022] Open
Abstract
New series of N-(arylidene)hydrazinoacetyl sulfonamides 4a1–6, 4b1–6 and N-(4-aryl-3-chloro-2-oxoazetidin-1-yl)aminoacetyl sulfonamides 5a1–6, 5b1–6 were synthesized. The structures of the new derivatives was confirmed using spectral methods (FT-IR, 1H-NMR, 13C-NMR). The antibacterial activities of these compounds against Gram positive (Staphyloccoccus aureus ATCC 6583, Staphyloccoccus epidermidis ATCC 12228, Enterococcus faecalis ATCC 25912) and Gram negative (Klebsiella pneumoniae CIP 53153, Proteus vulgaris CIP 104989, Citrobacter freundii CIP 5732, Enterobacter cloacae CIP 103475, Escherichia coli ATCC 25922, Pseudomonas aeruginosa CIP 82118) bacterial strains were evaluated using the broth micro-dilution method. Compound 4a2 displayed the highest antibacterial activity, especially against Staphyloccoccus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa. The antioxidant potential of the synthesized compounds was also investigated according to ferric reducing power, total antioxidant activity and DPPH radical scavenging assays. All tested compounds showed excellent antioxidant activity in comparison with sulfadiazine and sulfisoxazole which were used as parent sulfonamides. Moreover, some of them showed an antioxidant activity comparable with that of ascorbic acid. In general, the compounds designed based on a sulfadiazine skeleton (compounds 4a1–6, 5a1–6) are more active than those obtained from sulfisoxazole (compounds 4b1–6, 5b1–6), and the N-(arylidene)hydrazinoacetyl sulfonamide derivatives 4a1–6, 4b1–6 are more active than their azetidionone analogues 5a1–6, 5b1–6.
Collapse
Affiliation(s)
- Oana Maria Dragostin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, Iasi 700115, Romania; E-Mails: (O.M.D.); (F.L.)
| | - Florentina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, Iasi 700115, Romania; E-Mails: (O.M.D.); (F.L.)
| | - Cornelia Vasile
- Department of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania; E-Mail:
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 8 Mihail Sadoveanu Alley, Iasi 700489, Romania; E-Mails: (M.M.); (V.N.); (R.F.M.)
| | - Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 8 Mihail Sadoveanu Alley, Iasi 700489, Romania; E-Mails: (M.M.); (V.N.); (R.F.M.)
| | - Ramona Florina Moraru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 8 Mihail Sadoveanu Alley, Iasi 700489, Romania; E-Mails: (M.M.); (V.N.); (R.F.M.)
| | - Dragos Pieptu
- Department of Plastic Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, Iasi 700115, Romania
- Authors to whom correspondence should be addressed; E-Mails: (D.P.); (L.P.); Tel.: +40-232-412375 (L.P.); Fax: +40-232-211818 (L.P.)
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, Iasi 700115, Romania; E-Mails: (O.M.D.); (F.L.)
- Authors to whom correspondence should be addressed; E-Mails: (D.P.); (L.P.); Tel.: +40-232-412375 (L.P.); Fax: +40-232-211818 (L.P.)
| |
Collapse
|
20
|
Inhibition pattern of sulfamide-related compounds in binding to carbonic anhydrase isoforms I, II, VII, XII and XIV. Bioorg Med Chem 2013; 21:1410-8. [DOI: 10.1016/j.bmc.2012.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
21
|
Brenneman DE, Smith GR, Zhang Y, Du Y, Kondaveeti SK, Zdilla MJ, Reitz AB. Small molecule anticonvulsant agents with potent in vitro neuroprotection. J Mol Neurosci 2012; 47:368-79. [PMID: 22535312 DOI: 10.1007/s12031-012-9765-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at <40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Advanced Neural Dynamics, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wasowski C, Gavernet L, Barrios IA, Villalba ML, Pastore V, Samaja G, Enrique A, Bruno-Blanch LE, Marder M. N,N′-Dicyclohexylsulfamide and N,N′-diphenethylsulfamide are anticonvulsant sulfamides with affinity for the benzodiazepine binding site of the GABAA receptor and anxiolytic activity in mice. Biochem Pharmacol 2012; 83:253-9. [DOI: 10.1016/j.bcp.2011.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/05/2023]
|
23
|
Gavernet L, Gonzalez Funes JL, Blanch LB, Estiu G, Maresca A, Supuran CT. Affinity of Sulfamates and Sulfamides to Carbonic Anhydrase II Isoform: Experimental and Molecular Modeling Approaches. J Chem Inf Model 2010; 50:1113-22. [DOI: 10.1021/ci100112s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Jose L. Gonzalez Funes
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Luis Bruno Blanch
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Guillermina Estiu
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Alfonso Maresca
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T. Supuran
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
24
|
Comelli NC, Fuentealba P, Castro EA, Jubert AH. Theoretical characterization of SOME amides and esters DERIVATIVES of valproic acid. J Mol Model 2010; 16:343-59. [DOI: 10.1007/s00894-009-0554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 06/03/2009] [Indexed: 11/28/2022]
|
25
|
Parker MH, Smith-Swintosky VL, McComsey DF, Huang Y, Brenneman D, Klein B, Malatynska E, White HS, Milewski ME, Herb M, Finley MFA, Liu Y, Lubin ML, Qin N, Iannucci R, Leclercq L, Cuyckens F, Reitz AB, Maryanoff BE. Novel, Broad-Spectrum Anticonvulsants Containing a Sulfamide Group: Advancement of N-((Benzo[b]thien-3-yl)methyl)sulfamide (JNJ-26990990) into Human Clinical Studies. J Med Chem 2009; 52:7528-36. [DOI: 10.1021/jm801432r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael H. Parker
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Virginia L. Smith-Swintosky
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - David F. McComsey
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Yifang Huang
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Douglas Brenneman
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Brian Klein
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Ewa Malatynska
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - H. Steve White
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah 84112-5820
| | - Michael E. Milewski
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Mark Herb
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Michael F. A. Finley
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Yi Liu
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Mary Lou Lubin
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Ning Qin
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Robert Iannucci
- Drug Metabolism and Pharmacokinetics, Johnson & Johnson Pharmaceutical Research & Development, Raritan, New Jersey 08869-0602
| | - Laurent Leclercq
- Drug Metabolism and Pharmacokinetics, Johnson & Johnson Pharmaceutical Research & Development, 2340 Beerse, Belgium
| | - Filip Cuyckens
- Drug Metabolism and Pharmacokinetics, Johnson & Johnson Pharmaceutical Research & Development, 2340 Beerse, Belgium
| | - Allen B. Reitz
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| | - Bruce E. Maryanoff
- Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776
| |
Collapse
|
26
|
Gavernet L, Elvira JE, Samaja GA, Pastore V, Cravero MS, Enrique A, Estiu G, Bruno-Blanch LE. Synthesis and anticonvulsant activity of amino acid-derived sulfamides. J Med Chem 2009; 52:1592-601. [PMID: 19249853 DOI: 10.1021/jm800764p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfamides are promising functions for the design of new antiepileptic drugs ( Bioorg. Med. Chem. 2007, 15, 1556-1567; 5604-5614 ). Following previous research in this line, a set of amino acid-derived sulfamides has been designed, synthesized, and tested as new anticonvulsant compounds. The experimental data confirmed the ability of some of the structures to suppress the convulsions originated by the electrical seizure (MES test) at low doses (100 mg/kg).
Collapse
Affiliation(s)
- Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shimshoni JA, Bialer M, Yagen B. Synthesis and anticonvulsant activity of aromatic tetramethylcyclopropanecarboxamide derivatives. Bioorg Med Chem 2008; 16:6297-305. [DOI: 10.1016/j.bmc.2008.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/12/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|