1
|
Nowack L, Teschers CS, Albrecht S, Gilmour R. Oligodendroglial glycolipids in (Re)myelination: implications for multiple sclerosis research. Nat Prod Rep 2021; 38:890-904. [PMID: 33575689 DOI: 10.1039/d0np00093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.
Collapse
Affiliation(s)
- Luise Nowack
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany. and Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Charlotte S Teschers
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
2
|
Pokhodylo NT, Savka RD, Obushak MD. Synthesis of (1H-1,2,3-Triazol-1-yl)acetic Acid Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020080138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Prescher H, Schweizer A, Kuhfeldt E, Nitschke L, Brossmer R. New Human CD22/Siglec-2 Ligands with a Triazole Glycoside. Chembiochem 2017; 18:1216-1225. [PMID: 28374962 DOI: 10.1002/cbic.201600707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 12/15/2022]
Abstract
CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120, Heidelberg, Germany.,G3-BioTec, 69207, Sandhausen, Germany
| |
Collapse
|
4
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
5
|
Schwardt O, Kelm S, Ernst B. SIGLEC-4 (MAG) Antagonists: From the Natural Carbohydrate Epitope to Glycomimetics. Top Curr Chem (Cham) 2013; 367:151-200. [DOI: 10.1007/128_2013_498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Berger O, Kaniti A, van Ba CT, Vial H, Ward SA, Biagini GA, Bray PG, O'Neill PM. Synthesis and antimalarial activities of a diverse set of triazole-containing furamidine analogues. ChemMedChem 2011; 6:2094-108. [PMID: 21905228 DOI: 10.1002/cmdc.201100265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/29/2011] [Indexed: 11/07/2022]
Abstract
Four different series of triazole diamidines have been prepared by the Pinner method from the corresponding triazole dinitriles. Copper-catalyzed "click chemistry" was used for the synthesis of 1,4- and 4,5-substituted triazoles, aryl magnesium acetylide reagents for the 1,5-substituted triazoles, with a thermal dipolar addition reaction employed for the 2,4-substituted triazoles. In vitro antimalarial activity against two different PfCRT-modified parasite lines (Science 2002, 298, 210-213) of Plasmodium falciparum and inhibition of hemozoin formation were determined for each compound. Several diamidines with potent nanomolar antimalarial activities were identified, and selected molecules were resynthesized as their diamidoxime triazole prodrugs. One of these prodrugs, OB216, proved to be highly potent in vivo with an ED50 value of 5 mg kg(-1) (po) and an observed 100 % cure rate (CD100) of just 10 mg kg(-1) by oral (po) administration in mice infected with P. vinckei.
Collapse
Affiliation(s)
- Olivier Berger
- Department of Chemistry, University of Liverpool, Crown street, Liverpool, L69 3BX UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zeng Y, Rademacher C, Nycholat CM, Futakawa S, Lemme K, Ernst B, Paulson JC. High affinity sialoside ligands of myelin associated glycoprotein. Bioorg Med Chem Lett 2011; 21:5045-9. [PMID: 21561770 DOI: 10.1016/j.bmcl.2011.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2-6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a K(d) of 15nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Physiological Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch KW, Brand I. Impact of Strong and Weak Lipid-Protein Interactions on the Structure of a Lipid Bilayer on a Gold Electrode Surface. Chemphyschem 2011; 12:1066-79. [DOI: 10.1002/cphc.201100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/07/2011] [Indexed: 01/13/2023]
|
9
|
Interaction of siglec protein with glycolipids in a lipid bilayer deposited on a gold electrode surface. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Shelke S, Cutting B, Jiang X, Koliwer-Brandl H, Strasser D, Schwardt O, Kelm S, Ernst B. A Fragment-Based In Situ Combinatorial Approach To Identify High-Affinity Ligands for Unknown Binding Sites. Angew Chem Int Ed Engl 2010; 49:5721-5. [DOI: 10.1002/anie.200907254] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Shelke S, Cutting B, Jiang X, Koliwer-Brandl H, Strasser D, Schwardt O, Kelm S, Ernst B. A Fragment-Based In Situ Combinatorial Approach To Identify High-Affinity Ligands for Unknown Binding Sites. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Mesch S, Moser D, Strasser DS, Kelm A, Cutting B, Rossato G, Vedani A, Koliwer-Brandl H, Wittwer M, Rabbani S, Schwardt O, Kelm S, Ernst B. Low Molecular Weight Antagonists of the Myelin-Associated Glycoprotein: Synthesis, Docking, and Biological Evaluation. J Med Chem 2010; 53:1597-615. [DOI: 10.1021/jm901517k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Mesch
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Delia Moser
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Daniel S. Strasser
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Antje Kelm
- Department of Physiological Biochemistry, University of Bremen, D-28334 Bremen, Germany
| | - Brian Cutting
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Gianluca Rossato
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Angelo Vedani
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | - Matthias Wittwer
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Soerge Kelm
- Department of Physiological Biochemistry, University of Bremen, D-28334 Bremen, Germany
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Abstract
Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.
Collapse
Affiliation(s)
- Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| | | |
Collapse
|
14
|
Schwardt O, Gäthje H, Vedani A, Mesch S, Gao GP, Spreafico M, von Orelli J, Kelm S, Ernst B. Examination of the Biological Role of the α(2→6)-Linked Sialic Acid in Gangliosides Binding to the Myelin-Associated Glycoprotein (MAG). J Med Chem 2009; 52:989-1004. [DOI: 10.1021/jm801058n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Heiko Gäthje
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Angelo Vedani
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Stefanie Mesch
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Gan-Pan Gao
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Morena Spreafico
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Johannes von Orelli
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Sørge Kelm
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| |
Collapse
|