1
|
Ali I, Rafique R, Khan KM, Chigurupati S, Ji X, Wadood A, Rehman AU, Salar U, Alyamani NM, Hameed S, Taha M, Hussain S, Perveen S. Benzofuran Hybrids as Cholinesterase (AChE and BChE) Inhibitors: In Vitro, In Silico, and Kinetic Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1322-1337. [DOI: 10.1134/s1068162022060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 10/23/2023]
|
2
|
GÜLSEVEN SIDIR Y, SIDIR İ. The study on QSAR and relations between molecular descriptors of 5, 8-quinoline quinones derivatives. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
In this study, some electronic, hydrophobic and thermochemical parameters of 28 different 5,8-quinolinequinone derivatives having diverse substituents have been calculated by using DFT (B3LYP)/6-31G(d, p) method and basis set. Relationships between different molecular descriptors have been studied by using molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), molar refractivity (MR), octanol–water partition coefficient (log P), thermochemical properties (entropy (Se), capacity of heat (C)); as to investigate activity relationships with molecular structure. In addition, the QSAR/QSPR between molecular properties and biological activity (anti-proliferative and anti-inflammatory activity) has been investigated, where R, R2, F, P and RMSE have taken into account in order to find a statistically correct model in QSAR studies. The dependence of the electronegativity parameter on both electronic and thermochemical parameters is found to be the most correlated parameter.
Collapse
|
3
|
Sravya G, Khasanov AF, Krinochkin AP, Kopchuk DS, Slepukhin PA, Rahman M, Padmavathi V, Zyryanov GV, Rusinov VL, Chupakhin ON. Aryne-Mediated Transformations of 3-(α- or γ-R-2-pyridyl)-1,2,4-Triazines: Id Diels-Alder Reaction vs Domino Transformation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1962371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gundala Sravya
- Ural Federal University, Ekaterinburg, Russian Federation
| | - Albert F. Khasanov
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Alexey P. Krinochkin
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Dmitry S. Kopchuk
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Pavel A. Slepukhin
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Matiur Rahman
- Ural Federal University, Ekaterinburg, Russian Federation
| | | | - Grigory V. Zyryanov
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Vladimir L. Rusinov
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| | - Oleg N. Chupakhin
- Ural Federal University, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Ekaterinburg, Russian Federation
| |
Collapse
|
4
|
Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, Bower JF, Jardim GAM, da Silva Júnior EN, Torres-Santos EC, Menna-Barreto RFS. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities. Curr Pharm Des 2021; 27:1807-1824. [PMID: 33167829 DOI: 10.2174/1381612826666201109111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F Cunha-Junior
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Valter V Andrade-Neto
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - John F Bower
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Guilherme A M Jardim
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo C Torres-Santos
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective Tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem 2021; 111:104881. [PMID: 33839584 PMCID: PMC9893515 DOI: 10.1016/j.bioorg.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
Based on our previous study on the development of the furoquinolinedione and isoxazoloquinolinedione TDP2 inhibitors, the further structure-activity relationship (SAR) was studied in this work. A series of furoquinolinedione and isoxazoloquinolinedione derivatives were synthesized and tested for enzyme inhibitions. Enzyme-based assays indicated that isoxazoloquinolinedione derivatives selectively showed high TDP2 inhibitory activity at sub-micromolar range, as well as furoquinolinedione derivatives at low micromolar range. The most potent 3-(3,4-dimethoxyphenyl)isoxazolo[4,5-g]quinoline-4,9-dione (70) showed TDP2 inhibitory activity with IC50 of 0.46 ± 0.15 μM. This work will facilitate future efforts for the discovery of isoxazoloquinolinedione TDP2 selective inhibitors.
Collapse
|
6
|
Mir RH, Mohi-ud-din R, Wani TU, Dar MO, Shah AJ, Lone B, Pooja C, Masoodi MH. Indole: A Privileged Heterocyclic Moiety in the Management of Cancer. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208142108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic are a class of compounds that are intricately entwined into life processes.
Almost more than 90% of marketed drugs carry heterocycles. Synthetic chemistry, in
turn, allocates a cornucopia of heterocycles. Among the heterocycles, indole, a bicyclic structure
consisting of a six-membered benzene ring fused to a five-membered pyrrole ring with
numerous pharmacophores that generate a library of various lead molecules. Due to its profound
pharmacological profile, indole got wider attention around the globe to explore it fully
in the interest of mankind. The current review covers recent advancements on indole in the
design of various anti-cancer agents acting by targeting various enzymes or receptors, including
(HDACs), sirtuins, PIM kinases, DNA topoisomerases, and σ receptors.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-ud-din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abdul Jaleel Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Bashir Lone
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Chawla Pooja
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
7
|
Mao Y, Soni K, Sangani C, Yao Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr Top Med Chem 2020; 20:2599-2633. [PMID: 32942976 DOI: 10.2174/1568026620999200917154225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most difficult diseases and causes of death for many decades. Many pieces of research are continuously going on to get a solution for cancer. Quinoline and isoquinoline derivatives have shown their possibilities to work as an antitumor agent in anticancer treatment. The members of this privileged scaffold quinoline and isoquinoline have shown their controlling impacts on cancer treatment through various modes. In particular, this review suggests the current scenario of quinoline and isoquinoline derivatives as antitumor agents and refine the path of these derivatives to find and develop new drugs against an evil known as cancer.
Collapse
Affiliation(s)
- Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Chetan Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Gunes CE, Karaselek MA, Kursunlu AN, Ozmen M, Kurar E. Synthesis and evaluation of anticancer effect of a novel molecule based-on pillar[5]arene including multi quinoline units. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02547-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Lai CF, Xiao WB, Yan HC, Yang H, Wang LX, Guan H, Peng QJ, Deng ZR, Chen JW, An LK, Shi L. ZTW-41, a Potent Indolizinoquinoline-5,12-Dione Derivative Against Drug-Resistant Staphylococci and Enterococci Bacteria. Microb Drug Resist 2020; 26:100-109. [PMID: 31441704 DOI: 10.1089/mdr.2019.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
ZTW-41, an indolizinoquinoline-5,12-dione derivative, was investigated for antibacterial activity against Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). In our study, the MIC90s (minimum inhibitory concentrations) of ZTW-41 against MRSA (MRSA, n = 200), methicillin-sensitive S. aureus (MSSA, n = 100), Enterococcus faecalis (E. faecalis, n = 32), and Enterococcus faecium (E. faecium n = 32) were 0.25, 0.25, 0.125, and 8 μg/mL, respectively, whereas the MBC90s (minimum bactericidal concentrations) were 2, 1, 1, and >32 μg/mL, respectively. ZTW-41 maintained its potency at different pH levels (range 5-9) and in starting inoculum size up to 107 CFU/mL. The presence of human serum (25-75%) increased ZTW-41 MICs by two- to eightfold. Time-kill curves showed that ZTW-41 had bactericidal activity against MRSA, MSSA, and E. faecalis strains within 8 hours, and rebound growth occurred after 8 hours except at higher multiples of the MIC (4 × and 8 × ). In the acute toxicity study, no mortality or signs of toxicity was noted in mice after 14 days of observation at doses <50 mg/kg. ZTW-41 exhibited good selectivity indices (SIs) (SI = IC50/MIC90) ranging from 1.12 to 71.76 against clinical isolates, demonstrating excellent therapeutic selectivity in MRSA, MSSA, and E. faecalis strains. Moreover, the in vivo efficacy (effective dose [ED]50 = 6.59 mg/kg) of ZTW-41 was found comparable with vancomycin. Collectively, our favorable results supported ZTW-41 as a promising investigational candidate for treating drug-resistant bacteria infection.
Collapse
Affiliation(s)
- Chong-Fa Lai
- Southern Medical University, Guangzhou, China.,General Hospital of Southern Theatre Command, Guangzhou, China
| | - Wei-Bin Xiao
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Hua-Cheng Yan
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu-Xia Wang
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Guan
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Qiu-Ju Peng
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Zhi-Rong Deng
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Jian-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Lei Shi
- Southern Medical University, Guangzhou, China.,General Hospital of Southern Theatre Command, Guangzhou, China
| |
Collapse
|
10
|
Yang Y, Bin YD, Qin QP, Luo XJ, Zou BQ, Zhang HX. Novel Quinoline-based Ir(III) Complexes Exhibit High Antitumor Activity in Vitro and in Vivo. ACS Med Chem Lett 2019; 10:1614-1619. [PMID: 31857836 DOI: 10.1021/acsmedchemlett.9b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Eight novel Ir(III) complexes listed as [Ir(H-P)2(P)]PF6 (PyP-Ir), [Ir(H-P)2(dMP)]PF6 (PydMP-Ir), [Ir(H-P)2(MP)]PF6 (PyMP-Ir), [Ir(H-P)2(tMP)]PF6 (PytMP-Ir), [Ir(MPy)2(P)]PF6 (MPyP-Ir), [Ir(MPy)2(dMP)]PF6 (MPydMP-Ir), [Ir(MPy)2(MP)]PF6 (MPyMP-Ir), [Ir(MPy)2((tMP)]PF6 (MPytMP-Ir) with 2-phenylpyri-dine (H-P) and 3-methyl-2-phenylpyridine (MPy) as ancillary ligands and pyrido-[3,2-a]-pyrido[1',2':1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1',2':1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (tMP) as main ligands, respectively, were designed and synthesized to fully characterize and explore the effect of their toxicity on cancer cells. Cytotoxic mechanism studies demonstrated that the eight Ir(III) complexes exhibited highly potent antitumor activity selectively against cancer cell lines NCI-H460, T-24, and HeLa, and no activity against HL-7702, a noncancerous cell line. Among the eight Ir(III) complexes, MPytMP-Ir exhibited the highest cytotoxicity with an IC50 = 5.05 ± 0.22 nM against NCI-H460 cells. The antitumor activity of MPytMP-Ir in vitro could be contributed to the steric or electronic effect of the methyl groups, which induced telomerase inhibition and damaged mitochondria in NCI-H460 cells. More importantly, MPytMP-Ir displayed a superior inhibitory effect on NCI-H460 xenograft in vivo than cisplatin. Our work demonstrates that MPytMP-Ir could potentially be developed as a novel potent Ir-based antitumor drug.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Yi-Dong Bin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Xu-Jian Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| |
Collapse
|
11
|
Yu Q, Chen Y, Yang H, Zhang HL, Agama K, Pommier Y, An LK. The antitumor activity of CYB-L10, a human topoisomerase IB catalytic inhibitor. J Enzyme Inhib Med Chem 2019; 34:818-822. [PMID: 30907213 PMCID: PMC6442119 DOI: 10.1080/14756366.2018.1516651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/13/2023] Open
Abstract
DNA topoisomerase IB (TOP1) is a validated target for discovery and development of antitumor agents. Four TOP1 poisons are clinically used for tumor treatment now. In spite of their effectiveness in solid tumors, these camptothecin (CPT) poisons suffer from many shortcomings. Therefore, many investigations have focused on the discoveries of non-CPT poisons and catalytic inhibitors. Herein, we systematically study the antitumor activity of CYB-L10, a novel indolizinoquinolinedione TOP1 catalytic inhibitor discovered in our laboratory. The results indicated that CYB-L10 mainly acts on TOP1 in cancer cells and is not a substrate of the P-glycoprotein. In addition, CYB-L10 can induce apoptosis of HCT116 cells, shows high cytotoxicity against 60 human clinical cancer cell lines (NCI60) with the mean-graph midpoint for growth inhibition of all cancer cell lines of 0.050 µM concentration and obvious antitumor efficiency in vivo in the HCT116 xenograft model.
Collapse
Affiliation(s)
- Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Li Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Jain S, Chandra V, Kumar Jain P, Pathak K, Pathak D, Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
13
|
Kadela-Tomanek M, Bębenek E, Chrobak E, Boryczka S. 5,8-Quinolinedione Scaffold as a Promising Moiety of Bioactive Agents. Molecules 2019; 24:E4115. [PMID: 31739496 PMCID: PMC6891355 DOI: 10.3390/molecules24224115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Natural 5,8-quinolinedione antibiotics exhibit a broad spectrum of activities including anticancer, antibacterial, antifungal, and antimalarial activities. The structure-activity research showed that the 5,8-quinolinedione scaffold is responsible for its biological effect. The subject of this review report is a presentation of the pharmacological activity of synthetic 5,8-quinolinedione compounds containing different groups at C-6 and/or C-7 positions. The relationship between the activity and the mechanism of action is included if these data have been included in the original literature. The review mostly covers the period between 2000 and 2019. Previously published literature data were used to present historical points.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (E.B.); (E.C.); (S.B.)
| | | | | | | |
Collapse
|
14
|
Othman DI, Selim KB, El-Sayed MAA, Tantawy AS, Amen Y, Shimizu K, Okauchi T, Kitamura M. Design, Synthesis and Anticancer Evaluation of New Substituted Thiophene-Quinoline Derivatives. Bioorg Med Chem 2019; 27:115026. [DOI: 10.1016/j.bmc.2019.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
15
|
Logun MT, Wynens KE, Simchick G, Zhao W, Mao L, Zhao Q, Mukherjee S, Brat DJ, Karumbaiah L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J 2019; 33:11973-11992. [PMID: 31398290 DOI: 10.1096/fj.201802610rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Kallie E Wynens
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Gregory Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Leidong Mao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Shyamsivappan S, Vivek R, Saravanan A, Arasakumar T, Subashini G, Suresh T, Shankar R, Mohan PS. Synthesis and X-ray study of dispiro 8-nitroquinolone analogues and their cytotoxic properties against human cervical cancer HeLa cells. MEDCHEMCOMM 2019; 10:439-449. [PMID: 31015907 DOI: 10.1039/c8md00482j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
Abstract
A series of unique dispiro analogues containing an oxindole pyrrolidine 8-nitroquinolone hybrid has been obtained through a one-pot three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the condensation of isatins and benzylamine with (E)-3-arylidene-2,3-dihydro-8-nitro-4-quinolones. The structures of the newly synthesized compounds were characterized by using different spectroscopic techniques and by X-ray diffraction studies of their regio- and stereochemistry. All the synthesized compounds were screened for in vitro cytotoxic activity against the human cervical cancer cell line HeLa. The compounds have exhibited potent inhibition against human cervical cancer cells and insignificant toxicity to normal cells. The compounds 6d, 6a, 6h, 6b, and 6e induced apoptosis of HeLa cells, through ROS influx. The expression levels of proteins involved in the mitochondrion-related pathways were detected, and Western blot analysis showed that apoptosis occurred via activation of caspase-3.
Collapse
Affiliation(s)
- Selvaraj Shyamsivappan
- School of Chemical Sciences , Bharathiar University , Coimbatore , Tamil Nadu , India . ;
| | - Raju Vivek
- Chemical Biology , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - Arjunan Saravanan
- DRDO-BU CLS , Bharathiar University Campus , Coimbatore , Tamil Nadu , India
| | - Thangaraj Arasakumar
- School of Chemical Sciences , Bharathiar University , Coimbatore , Tamil Nadu , India . ;
| | - Gopalan Subashini
- Department of Chemistry , P.S.G.R. Krishnammal College For Women , Coimbatore , Tamil Nadu , India
| | - Thangaraj Suresh
- School of Chemical Sciences , Bharathiar University , Coimbatore , Tamil Nadu , India . ;
| | - Ramasamy Shankar
- Department of Physics , Bharathiar University , Coimbatore , Tamil Nadu , India
| | | |
Collapse
|
17
|
Yang R, Chen Y, Pan L, Yang Y, Zheng Q, Hu Y, Wang Y, Zhang L, Sun Y, Li Z, Meng X. Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors. Bioorg Med Chem 2018; 26:4886-4897. [DOI: 10.1016/j.bmc.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 01/27/2023]
|
18
|
General synthesis of pyrido[1,2-a]indoles via Pd-catalyzed cyclization of o-picolylbromoarenes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Yu Q, Yang H, Zhu TW, Yu LM, Chen JW, Gu LQ, Huang ZS, An LK. Synthesis, cytotoxicity and structure-activity relationship of indolizinoquinolinedione derivatives as DNA topoisomerase IB catalytic inhibitors. Eur J Med Chem 2018; 152:195-207. [DOI: 10.1016/j.ejmech.2018.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
20
|
Yu LM, Hu Z, Chen Y, Ravji A, Lopez S, Plescia CB, Yu Q, Yang H, Abdelmalak M, Saha S, Agama K, Kiselev E, Marchand C, Pommier Y, An LK. Synthesis and structure-activity relationship of furoquinolinediones as inhibitors of Tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Med Chem 2018; 151:777-796. [PMID: 29677635 DOI: 10.1016/j.ejmech.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a recently discovered enzyme specifically repairing topoisomerase II (TOP2)-mediated DNA damage. It has been shown that inhibition of TDP2 synergize with TOP2 inhibitors. Herein, we report the discovery of the furoquinolinedione chemotype as a suitable skeleton for the development of selective TDP2 inhibitors. Compound 1 was identified as a TDP2 inhibitor as a result of screening our in-house compound library for compounds selective for TDP2 vs. TDP1. Further SAR studies provide several selective TDP2 inhibitors at low-micromolar range. The most potent compound 74 shows inhibitory activity with IC50 of 1.9 and 2.1 μM against recombinant TDP2 and TDP2 in whole cell extracts (WCE), respectively.
Collapse
Affiliation(s)
- Le-Mao Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhu Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Azhar Ravji
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sophia Lopez
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Caroline B Plescia
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Monica Abdelmalak
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sourav Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
22
|
Sonmez F, Zengin Kurt B, Gazioglu I, Basile L, Dag A, Cappello V, Ginex T, Kucukislamoglu M, Guccione S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32:285-297. [PMID: 28097911 PMCID: PMC6010140 DOI: 10.1080/14756366.2016.1250753] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 11/20/2022] Open
Abstract
New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC50 value of 43 nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130.
Collapse
Affiliation(s)
- Fatih Sonmez
- Pamukova Vocational High School, Sakarya University, Sakarya, Turkey
| | - Belma Zengin Kurt
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Livia Basile
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| | - Aydan Dag
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Valentina Cappello
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| | - Tiziana Ginex
- Molecular Modelling Laboratory, Department of Food Science, University of Parma, Parma, Italy
| | - Mustafa Kucukislamoglu
- Faculty of Arts and Science, Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - Salvatore Guccione
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| |
Collapse
|
23
|
Yang H, Wang HW, Zhu TW, Yu LM, Chen JW, Wang LX, Shi L, Li D, Gu LQ, Huang ZS, An LK. Syntheses and antibacterial activity of soluble 9-bromo substituted indolizinoquinoline-5,12-dione derivatives. Eur J Med Chem 2016; 127:166-173. [PMID: 28061346 DOI: 10.1016/j.ejmech.2016.12.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
Abstract
In our previous research, 9-bromo indolizinoquinoline-5,12-dione 1 has been found to be a good anti-MRSA agent. However, it had very low bioavailability in vivo possibly due to its low solubility in water. In order to obtain the derivatives with higher anti-MRSA activity and good water solubility, twenty eight bromo-substituted indolizinoquinoline-5,12-dione derivatives were synthesized in the present study. The antibacterial activity of the synthesized compounds was evaluated against one gram-negative and some gram-positive bacterial strains including 100 clinical MRSA strains. The UV assays were carried out to determine the solubility of six active compounds 16, 21, 23 and 27-29. The most potent compound 28 exhibited strong activity against clinical MRSA strains with both MIC50 and MIC90 values lower than 7.8 ng/mL. Compound 27 had good water solubility of 1.98 mg/mL and strong activity against clinical MRSA strains with MIC50 value of 63 ng/mL and MIC90 value of 125 ng/mL, 16-fold higher than that of Vancomycin.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao-Wen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Teng-Wei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Le-Mao Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu-Xia Wang
- Department of Clinical Laboratory, Guangzhou Liuhuaqiao Hospital, Guangzhou 510010, China
| | - Lei Shi
- Department of Clinical Laboratory, Guangzhou Liuhuaqiao Hospital, Guangzhou 510010, China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Yadav DK, Rai R, Kumar N, Singh S, Misra S, Sharma P, Shaw P, Pérez-Sánchez H, Mancera RL, Choi EH, Kim MH, Pratap R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci Rep 2016; 6:38128. [PMID: 27922047 PMCID: PMC5138627 DOI: 10.1038/srep38128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.
Collapse
Affiliation(s)
- Dharmendra K. Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, India
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Incheon, Korea
| | - Reeta Rai
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Naresh Kumar
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-Gu, Seoul 139-701, Korea
| | - Surjeet Singh
- Department of Chemistry, University of Delhi-110007 India
| | - Sanjeev Misra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, India
| | - Priyanka Shaw
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-Gu, Seoul 139-701, Korea
| | - Horacio Pérez-Sánchez
- Computer Science Department, Catholic University of Murcia (UCAM) E30107, Murcia, Spain
| | - Ricardo L. Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University: GPO Box U1987, Perth WA 6845, Australia
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-Gu, Seoul 139-701, Korea
| | - Mi-hyun Kim
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Incheon, Korea
| | | |
Collapse
|
25
|
Alfadhli A, Mack A, Harper L, Berk S, Ritchie C, Barklis E. Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties. Bioorg Med Chem 2016; 24:5618-5625. [PMID: 27663546 DOI: 10.1016/j.bmc.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 12/15/2022]
Abstract
We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Andrew Mack
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Logan Harper
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Sam Berk
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Christopher Ritchie
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
26
|
Mabb AM, Simon JM, King IF, Lee HM, An LK, Philpot BD, Zylka MJ. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS One 2016; 11:e0156439. [PMID: 27231886 PMCID: PMC4883752 DOI: 10.1371/journal.pone.0156439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 11/19/2022] Open
Abstract
Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A) that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.
Collapse
Affiliation(s)
- Angela M. Mabb
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Jeremy M. Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ian F. King
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hyeong-Min Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Benjamin D. Philpot
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark J. Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
27
|
Yu LM, Zhang XR, Li XB, Yang Y, Wei HY, He XX, Gu LQ, Huang ZS, Pommier Y, An LK. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors. Eur J Med Chem 2015; 101:525-33. [PMID: 26188908 DOI: 10.1016/j.ejmech.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/21/2015] [Accepted: 07/04/2015] [Indexed: 11/17/2022]
Abstract
In our previous work, indolizinoquinolinedione derivative 1 was identified as a Top1 catalytic inhibitor. Herein, a series of 6-substituted indolizinoquinolinedione derivatives were synthesized through modification of the parent compound 1. Top1 cleavage and relaxation assays indicate that none of these novel compounds act as classical Top1 poison, and that the compounds with alkylamino terminus at C-6 side chain, including 8, 11-16, 18-21, 25, 26 and 28-30, are the most potent Top1 catalytic inhibitors. Top1-mediated unwinding assay demonstrated that 14, 22 and 26 were Top1 catalytic inhibitors without Top1-mediated unwinding effect. Moreover, MTT results showed that compounds 26, 28-30 exhibit significant cytotoxicity against human leukemia HL-60 cells, and that compound 26 exerts potent cytotoxicity against A549 lung cancer cells at nanomolar range.
Collapse
Affiliation(s)
- Le-Mao Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao-Ru Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao-Bing Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Yu Wei
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xi-Xin He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Outlaw VK, d’Andrea FB, Townsend CA. One-pot synthesis of highly substituted N-fused heteroaromatic bicycles from azole aldehydes. Org Lett 2015; 17:1822-5. [PMID: 25815402 PMCID: PMC4500639 DOI: 10.1021/ol5036936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient route to substituted N-fused aromatic heterocycles, including indolizines, imidazo[1,2-a]pyridines, and imidazo[1,5-a]pyridines from azole aldehydes, is reported. Wittig olefination of the aldehydes with fumaronitrile and triethylphosphine affords predominantly E-alkenes that undergo rapid cyclization upon treatment with a mild base. Substituent control of the 1-, 2-, and 3-positions of the resulting heteroaromatic bicycles is shown. Alternatively, the isolable E-alkene undergoes selective alkylation with electrophiles, followed by in situ annulation to indolizines additionally substituted at the 6-position.
Collapse
Affiliation(s)
- Victor K. Outlaw
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Felipe B. d’Andrea
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
29
|
Ding Y, Wu Q, Zheng K, An L, Hu X, Mei W. Imaging of the nuclei of living tumor cells by novel ruthenium(ii) complexes coordinated with 6-chloro-5-hydroxylpyrido[3,2-a]phenazine. RSC Adv 2015. [DOI: 10.1039/c5ra11127g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Novel ruthenium(ii) complex 1 can be developed as a low toxicity fluorescence probe for living cell nuclei in future.
Collapse
Affiliation(s)
- Yang Ding
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Kangdi Zheng
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Linkun An
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaoying Hu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| |
Collapse
|
30
|
Jastrzebska M, Boryczka S, Kadela M, Wrzalik R, Kusz J, Nowak M. Synthesis, crystal structure and infrared spectra of new 6- and 7-propylamine-5,8-quinolinediones. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Ryu CK, Oh SY, Choi SJ, Kang DY. Synthesis of Antifungal Evaluation of 2 H-[1,2,3]Triazolo[4,5- g]isoquinoline-4,9-diones. Chem Pharm Bull (Tokyo) 2014; 62:1119-24. [DOI: 10.1248/cpb.c14-00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chung-Kyu Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Sun Young Oh
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Soo Jung Choi
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Da Young Kang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| |
Collapse
|
33
|
Gold-catalyzed cascade C–C and C–N bond formation: synthesis of polysubstituted indolequinones and pyrroles. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
A novel class of selective acetylcholinesterase inhibitors: synthesis and evaluation of (E)-2-(benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules 2012; 17:12072-85. [PMID: 23085657 PMCID: PMC6269038 DOI: 10.3390/molecules171012072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022] Open
Abstract
(E)-2-(benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles are described as a new class of selective inhibitors of acetylcholinesterase (AChE). The most potent compound in the series exhibited good AChE inhibitory activity (IC₅₀ = 64 µM). Compound 7f was found to be more selective than galanthamine in inhibiting AChE and it showed a moderate selectivity index. Kinetic studies on AChE indicated that a competitive type of inhibition pattern exist for these acrylonitrile derivates. Molecular docking models of the ligand-AChE complexes suggest that compound 7 g is located on the periphery of the AChE active site.
Collapse
|
35
|
Ghorab MM, Ragab FA, Heiba HI, Nissan YM, Ghorab WM. Novel brominated quinoline and pyrimidoquinoline derivatives as potential cytotoxic agents with synergistic effects of γ-radiation. Arch Pharm Res 2012; 35:1335-46. [DOI: 10.1007/s12272-012-0803-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/10/2011] [Accepted: 11/03/2011] [Indexed: 10/27/2022]
|
36
|
Zhang DL, Zhang LP, Yao J, Wu XW, An LK. Ethyl 9-fluoro-5,12-dioxo-5,12-dihydroindolizino[2,3- g]quinoline-6-carboxylate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o2548. [PMID: 22904980 PMCID: PMC3414993 DOI: 10.1107/s160053681202692x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/14/2012] [Indexed: 11/27/2022]
Abstract
In the title molecule, C18H11FN2O4, the fused four- ring system is essentially planar, with an r.m.s. deviation of 0.032 Å. In the crystal, molecules are connected by π–π stacking interactions [centroid–centroid distances = 3.5684 (9) and 3.8247 (9) Å] into chains along [100].
Collapse
|
37
|
Gabriele B, Veltri L, Mancuso R, Salerno G, Maggi S, Aresta BM. A Palladium Iodide-Catalyzed Carbonylative Approach to Functionalized Pyrrole Derivatives. J Org Chem 2012; 77:4005-16. [DOI: 10.1021/jo300365n] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bartolo Gabriele
- Dipartimento
di Scienze Farmaceutiche, Università della Calabria, 87036 Arcavacata
di Rende (CS), Italy
| | - Lucia Veltri
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende (CS), Italy
| | - Raffaella Mancuso
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende (CS), Italy
| | - Giuseppe Salerno
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende (CS), Italy
| | - Sabino Maggi
- Istituto di Cristallografia, CNR, 70124 Via Amendola,
122/O, Bari, Italy
| | | |
Collapse
|
38
|
Wu ZP, Wu XW, Shen T, Li YP, Cheng X, Gu LQ, Huang ZS, An LK. Synthesis and Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of 7-Alkoxyl Substituted Indolizinoquinoline-5,12-dione Derivatives. Arch Pharm (Weinheim) 2011; 345:175-84. [DOI: 10.1002/ardp.201100188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 11/05/2022]
|
39
|
Wu XW, Wu ZP, Wang LX, Zhang HB, Chen JW, Zhang W, Gu LQ, Huang ZS, An LK. Synthesis, antimicrobial activity and possible mechanism of action of 9-bromo-substituted indolizinoquinoline-5,12-dione derivatives. Eur J Med Chem 2011; 46:4625-33. [PMID: 21839550 DOI: 10.1016/j.ejmech.2011.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/02/2023]
Abstract
A series of 9-bromo-substituted indolizinoquinoline-5,12-dione derivatives was synthesized. Antimicrobial activity assessment indicates that compounds 1, 26, 27 and 28 exhibit strong activity against gram-positive bacterial strains, including Beta-hemolytic streptococcus CMCC32210, Staphylococcus aureus ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecalis ATCC29212 and methicillin-resistant S. aureus ATCC43300 (MRSA). Compound 27 shows the best anti-MRSA activity with an MIC value of 0.031 μg/ml. To assess the mechanism of action, the inhibitory activities of compound 1 against DNA gyrase and DNA topoisomerase IV were also measured. The results indicate that compound 1 has strong inhibitory effects on the Escherichia coli DNA gyrase supercoiling activity and S. aureus Topo IV relaxing activity.
Collapse
Affiliation(s)
- Xi-Wei Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ghorab MM, Ragab FA, Heiba HI, Ghorab WM. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Chen QM, Yi GB, An LK, Feng XL. 5,6,7-Trichloro-2-methoxy-8-hydroxyquinoline. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o1108. [PMID: 21754426 PMCID: PMC3089234 DOI: 10.1107/s1600536811010853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/23/2011] [Indexed: 05/26/2023]
Abstract
In the title compound, C10H6Cl3NO2, a mean plane fitted through all non-H atoms has an r.m.s. deviation of 0.035 Å. In the crystal, adjacent molecules are connected by O—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 3.650 (1) Å], resulting in an infinite chain which propagates in the b-axis direction.
Collapse
|
42
|
Riva E, Comi D, Borrelli S, Colombo F, Danieli B, Borlak J, Evensen L, Lorens JB, Fontana G, Gia OM, Via LD, Passarella D. Synthesis and biological evaluation of new camptothecin derivatives obtained by modification of position 20. Bioorg Med Chem 2010; 18:8660-8. [DOI: 10.1016/j.bmc.2010.09.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/17/2023]
|
43
|
Wu N, Wu XW, Agama K, Pommier Y, Du J, Li D, Gu LQ, Huang ZS, An LK. A novel DNA topoisomerase I inhibitor with different mechanism from camptothecin induces G2/M phase cell cycle arrest to K562 cells. Biochemistry 2010; 49:10131-6. [PMID: 21033700 PMCID: PMC3010555 DOI: 10.1021/bi1009419] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA topoisomerase I (Top1) is an essential nuclear enzyme and a validated target for anticancer agent screening. In a previous study, we found that indolizinoquinoline-5,12-dione derivatives show significant biological activity against several human cancer cell lines. To understand their mechanism of inhibition of cancer cell growth, one indolizinoquinoline-5,12-dione derivative, CY13II, was further studied as lead. Our present results indicate that CY13II shows more potent antiproliferative activity against K562 cells than camptothecin. Additionally, K562 cells were arrested in G2/M, and their growth rate decreased after treatment with CY13II at micromolar concentration. Biochemical Top1 assays indicate that CY13II exhibits a different inhibitory mechanism from camptothecin. Unlike camptothecin, CY13II specifically inhibits the catalytic cleavage activity of Top1 instead of forming the drug-enzyme-DNA covalent ternary complex.
Collapse
Affiliation(s)
- Ning Wu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi-Wei Wu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892-4255, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892-4255, USA
| | - Jun Du
- Department of Microbial and Biochemical Pharmac, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin-Kun An
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
44
|
Mulchin BJ, Newton CG, Baty JW, Grasso CH, Martin WJ, Walton MC, Dangerfield EM, Plunkett CH, Berridge MV, Harper JL, Timmer MS, Stocker BL. The anti-cancer, anti-inflammatory and tuberculostatic activities of a series of 6,7-substituted-5,8-quinolinequinones. Bioorg Med Chem 2010; 18:3238-51. [DOI: 10.1016/j.bmc.2010.03.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/23/2022]
|
45
|
Shen DQ, Wu N, Li YP, Wu ZP, Zhang HB, Huang ZS, Gu LQ, An LK. Design, Synthesis, and Cytotoxicity of Indolizinoquinoxaline-5,12-dione Derivatives, Novel DNA Topoisomerase IB Inhibitors. Aust J Chem 2010. [DOI: 10.1071/ch09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of new indolizinoquinoxaline-5,12-dione derivatives were designed and synthesized via a heterocyclization reaction of 6,7-dichloroquinoxaline-5,8-dione with active methylene reagents and pyridine derivatives. The synthesized compounds exhibited significant activity to inhibit the growth of four human tumour cell lines, including lung adenocarcinoma cell, large-cell lung carcinoma cell, breast carcinoma cell, and ardriamycin-resistant breast carcinoma cell at micromolar range. These compounds were also investigated for their inhibition to DNA topoisomerase IB activity. The results indicated that the indolizinoquinoxaline-5,12-dione structure might be a potential pharmacophore in anti-cancer drug design.
Collapse
|
46
|
Pommier Y, Cushman M. The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives. Mol Cancer Ther 2009; 8:1008-14. [PMID: 19383846 DOI: 10.1158/1535-7163.mct-08-0706] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because camptothecins are effective against previously resistant tumors and are the only class of topoisomerase I (Top1) inhibitors approved for cancer treatment, we developed the indenoisoquinolines. Like camptothecins, the indenoisoquinolines selectively trap Top1-DNA cleavage complexes and have been cocrystallized with the Top1-DNA cleavage complexes. Indenoisoquinolines show antitumor activity in animal models. They have several advantages over the camptothecins: (a) They are synthetic and chemically stable. (b) The Top1 cleavage sites trapped by the indenoisoquinolines have different genomic locations, implying differential targeting of cancer cell genomes. (c) The Top1 cleavage complexes trapped by indenoisoquinolines are more stable, indicative of prolonged drug action. (d) They are seldom or not used as substrates for the multidrug resistance efflux pumps (ABCG2 and MDR-1). Among the >400 indenoisoquinolines synthesized and evaluated, three have been retained as leads for clinical development by the National Cancer Institute: NSC 706744, NSC 725776 (Indimitecan), and NSC 724998 (Indotecan). The trapping of Top1 cleavage complexes by indenoisoquinolines in cells results in the rapid and sustained phosphorylation of histone H2AX (γ-H2AX). We discuss the use of γ-H2AX as a pharmacodynamic biomarker for the clinical development of the indenoisoquinolines.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Defant A, Guella G, Mancini I. Synthesis and in-vitro cytotoxicity evaluation of novel naphtindolizinedione derivatives, part II: improved activity for aza-analogues. Arch Pharm (Weinheim) 2009; 342:80-6. [PMID: 19173337 DOI: 10.1002/ardp.200800177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous investigation on potential antitumor agents now got enriched by the evaluation of in-vitro activity against a full panel of NCI cancer cell lines for five new compounds. The concurrent presence in the molecular structure of a nitrogen atom in the aromatic system and a N,N-dimethylaminoethyl amide chain play a decisive role to enhance cytotoxicity. The N,N-anti compound 14 shows a higher activity than its N,N-syn isomer, exhibiting the best selective inhibition against the melanoma MALME-3M cell line, with a GI(50)-value (= 30 nM) corresponding to a 330-fold increase in activity compared to the corresponding deaza-analogue. Compound 14 is efficiently synthesized by aminolysis of the ester obtained as a single regio-isomer by an one-pot three-component procedure involving metal-assisted cyclization under microwave irradiation conditions.
Collapse
Affiliation(s)
- Andrea Defant
- Laboratorio di Chimica Bioorganica, Dipartimento di Fisica, Università degli studi di Trento, Povo Trento, Italy
| | | | | |
Collapse
|