1
|
Yabu M, Haga Y, Itoh T, Goto E, Suzuki M, Yamazaki K, Mise S, Yamamoto K, Matsumura C, Nakano T, Sakaki T, Inui H. Hydroxylation and dechlorination of 3,3',4,4'-tetrachlorobiphenyl (CB77) by rat and human CYP1A1s and critical roles of amino acids composing their substrate-binding cavity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155848. [PMID: 35568185 DOI: 10.1016/j.scitotenv.2022.155848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 (CYP) monooxygenases play critical roles in determining the toxicity of polychlorinated biphenyls (PCBs) in mammals. Hydroxylation of PCBs by these enzymes leads to increased water solubility, promoting the elimination of PCBs from the body. The CYP1 family is mainly responsible for metabolizing PCBs that exhibit a dioxin-like toxicity. Although the dioxin-like PCB 3,3',4,4'-tetrachlorobiphenyl (CB77) is abundant in the environment and accumulates in organisms, information on CB77 metabolism by CYP1A1s is limited. In this study, recombinant rat CYP1A1 metabolized CB77 to 4'-hydroxy (OH)-3,3',4,5'-tetrachlorobiphenyl (CB79) and 4'-OH-3,3',4-trichlorobiphenyl (CB35), whereas human CYP1A1 produced only 4'-OH-CB79. Rat CYP1A1 exhibited much higher metabolizing activity than human CYP1A1 because CB77 was stably accommodated in the substrate-binding cavity of rat CYP1A1 and was close to its heme. In a rat CYP1A1 mutant with two human-type amino acids, the production of 4'-OH-CB79 decreased, whereas that of the dechlorinated metabolite 4'-OH-CB35 increased. These results are explained by a shift in the CB77 positions toward the heme. This study provides insight into the development of enzymes with high metabolizing activity and clarifies the structural basis of PCB metabolism, as dechlorination contributes to a drastic decrease in dioxin-like toxicity.
Collapse
Affiliation(s)
- Miku Yabu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuki Haga
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukihiracho, Suma-ku, Kobe, Hyogo 654-0037, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Erika Goto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Motoharu Suzuki
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukihiracho, Suma-ku, Kobe, Hyogo 654-0037, Japan
| | - Kiyoshi Yamazaki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shintaro Mise
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukihiracho, Suma-ku, Kobe, Hyogo 654-0037, Japan
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
2
|
Zhou F, Zhou J, Zhang H, Tong HH, Nie J, Li L, Zhang Y, Du J, Ma A, Yang X, Zhou Z. Structure determination and in vitro/vivo study on carbamazepine-naringenin (1:1) cocrystal. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Jeon J, Hollender J. In vitro biotransformation of pharmaceuticals and pesticides by trout liver S9 in the presence and absence of carbamazepine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109513. [PMID: 31421535 DOI: 10.1016/j.ecoenv.2019.109513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to develop (i) a technique for identifying metabolites of organic contaminants by using an in vitro system of trout S9 and liquid chromatography-high-resolution mass spectrometry-based identification method and (ii) to apply this technique to identify the interactive potential of carbamazepine on the formation rate of other metabolites. The pharmaceuticals carbamazepine and propranolol and the pesticides azoxystrobin, diazinon, and fipronil were selected as test contaminants. As a result, a total of ten metabolites were identified for the five parent substances, six of which were confirmed using reference standards. Metabolic reactions included hydroxylation, epoxidation, S-oxidation, and dealkylation. The metabolic transformation rate ranged from 0.2 to 3.5 pmol/mg protein/min/μmol substrate. In the binary exposure experiment with increasing carbamazepine concentration, the formation rates of diazinon and fipronil metabolites (MDI2 and MFP2, respectively) increased, while formation of metabolites of propranolol and azoxystrobin (MPR1, MPR2, MPR3, and MAZ1) slowed down. Meanwhile, S9 pre-exposed to carbamazepine produced diazoxon, a toxic metabolite of diazinon, and pyrimidinol, a less toxic metabolite, more rapidly. These results suggest that carbamazepine, a perennial environmental pollutant, might modulate the toxicity of other substances such as diazinon but further in vivo studies are needed.
Collapse
Affiliation(s)
- Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
4
|
Xue Y, Li J, Wu Z, Liu G, Tang Y, Li W. Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E. Chem Biol Drug Des 2019; 93:854-864. [PMID: 30637977 DOI: 10.1111/cbdd.13475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
The cytochromes CYP3A4 and CYP3A5 share 84% sequence identity, but they exhibit different catalytic activities toward some substrates. Schisantherin E (SE) was recently identified as a selective substrate of CYP3A5, which exhibited catalytic efficiency that was more than 23 times higher than CYP3A4. At present, however, the structural determinants responsible for the different catalytic activities of the two enzymes toward SE have not been fully understood. In this study, a combination of molecular docking, molecular dynamic simulations, and binding free energy calculation was performed on the CYP3A4/CYP3A5-SE systems to investigate the issue. The results demonstrate that Ser119 in CYP3A4 and Glu374 in CYP3A5 formed direct hydrogen bonding with SE, respectively. Additionally, one water molecule located between the B-C loop and the I helix mediated different hydrogen-bonding networks between CYP3A4/3A5 and SE. The residue differences (Phe/Leu108 and Leu/Phe210) triggered the distinct conformational changes of the Phe-cluster residues, especially Phe213 and Phe215, which formed stronger hydrophobic interactions with SE in CYP3A5. The calculated binding free energies were consistent with the experimental results.
Collapse
Affiliation(s)
- Yuhan Xue
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Pharmacokinetic Drug-Drug Interactions of Mood Stabilizers and Risperidone in Patients Under Combined Treatment. J Clin Psychopharmacol 2016; 36:554-561. [PMID: 27811552 DOI: 10.1097/jcp.0000000000000601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The combination of anticonvulsant mood stabilizers with antipsychotic drugs may lead to clinically relevant drug-drug interactions. The objective of the study was to identify pharmacokinetic interactions of different mood stabilizers on the metabolism of risperidone (RIS) under natural conditions. METHODS A large therapeutic drug monitoring database containing plasma concentrations of RIS and its metabolite 9-hydroxy-RIS (9-OH-RIS) of 1,584 adult patients was analyzed. Four groups (n = 1,072) were compared: a control group without a potentially cytochrome interacting comedication (R0, n = 852), a group comedicated with valproate (VPA) (RVPA, n = 153), a group comedicated with lamotrigine (LMT) (RLMT, n = 46), and a group under concomitant medication with carbamazepine (CBZ) (RCBZ, n = 21). Dose-adjusted plasma concentrations (C/D ratio) for RIS, 9-OH-RIS and active moiety (AM) (RIS + 9-OH-RIS), as well as metabolic ratios (RIS/9-OH-RIS) were computed. RESULTS Groups did not differ with regard to the daily dosage (P = 0.46). Differences were detected for the distributions of the C/D ratios for RIS, 9-OH-RIS and AM (P = 0.003, P < 0.001 and P < 0.001, respectively). Differences remained significant after conducting a Bonferroni correction (P = 0.0125). Pairwise comparisons of the concomitant medication groups with the control group revealed significant differences; RIS C/D ratios were significantly higher in the VPA and the LMT group than in the control group (P = 0.013; P = 0.021). However, these differences did not remain significant after Bonferroni correction. In contrast, CBZ-treated patients showed lower dose-adjusted plasma concentrations of 9-OH-RIS (P < 0.001) as well as the AM (P < 0.001) than the control group; this difference survived the Bonferroni correction. CONCLUSIONS The data give evidence for pharmacokinetic interactions between RIS and different anticonvulsant mood stabilizers. Carbamazepine decreased serum concentrations of 9-OH-RIS and the AM when compared with the control group. In case of VPA and LMT, findings were less significant; hints for a weak RIS metabolism inhibition by LMT of unclear clinical significance were found.
Collapse
|
6
|
Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics 2015; 15:1867-79. [PMID: 25495409 DOI: 10.2217/pgs.14.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM The present study aimed to evaluate the effects of SNPs of major transporter and metabolizing enzyme genes on carbamazepine (CBZ) metabolism in Chinese patients with epilepsy. MATERIALS & METHODS For 210 epileptic patients treated with CBZ as monotherapy, nine SNPs in candidate genes ABCB1, CYP3A4, CYP3A5, POR and EPHX1 were analyzed by PCR-RFLP or direct sequencing. Serum concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC. Dose-adjusted concentrations of CBZ (CDRCBZ), CBZE (CDRCBZE), CBZD (CDRCBZ D) and CBZD:CBZE ratio were used as evaluation parameters for CBZ metabolism. RESULTS The ABCB1 c.3435C>T was significantly associated with the CDR of CBZ and its major metabolites. CYP3A4*1G and CYP3A5*3 could influence CBZ metabolism, while POR*28 had no effect on it. The EPHX1 c.416A>G and c.128G>C variants were significantly associated with CBZD:CBZE ratio. CONCLUSION Our data suggest that certain polymorphisms of major transporter and metabolizing enzyme genes could in part influence interindividual variability of CBZ metabolism in Chinese patients with epilepsy.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | |
Collapse
|
7
|
Sasahara K, Mashima A, Yoshida T, Chuman H. Molecular dynamics and density functional studies on the metabolic selectivity of antipsychotic thioridazine by cytochrome P450 2D6: Connection with crystallographic and metabolic results. Bioorg Med Chem 2015; 23:5459-65. [PMID: 26264841 DOI: 10.1016/j.bmc.2015.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
CYP2D6, a cytochrome P450 isoform, significantly contributes to the metabolism of many clinically important drugs. Thioridazine (THD) is one of the phenothiazine-type antipsychotics, which exhibit dopamine D2 antagonistic activity. THD shows characteristic metabolic profiles compared to other phenothiazine-type antipsychotics such as chlorpromazine. The sulfur atom attached to the phenothiazine ring is preferentially oxidized mainly by CYP2D6, that is, the 2-sulfoxide is a major metabolite, and interestingly this metabolite shows more potent activity against dopamine D2 receptors than THD. On the other hand, the formation of this metabolite causes many serious problems for its clinical use. Wójcikowski et al. (Drug Metab. Dispos. 2006, 34, 471) reported a kinetic study of THD formed by CYP2D6. Recently, Wang et al. (J. Biol. Chem. 2012, 287, 10834 and J. Biol. Chem. 2015, 290, 5092) revealed the crystallographic structure of THD with CYP2D6. In the current study, the binding and reaction mechanisms at the atomic and electronic levels were computationally examined based on the assumption as to whether or not the different crystallographic binding poses correspond to the different metabolites. The binding and oxidative reaction steps in the whole metabolic process were investigated using molecular dynamics and density functional theory calculations, respectively. The current study demonstrated the essential importance of the orientation of the substrate in the reaction center of CYP2D6 for the metabolic reaction.
Collapse
Affiliation(s)
- Katsunori Sasahara
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan; Department of Drug Metabolism, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Akira Mashima
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Tatsusada Yoshida
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Chuman
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
8
|
High warfarin sensitivity in carriers of CYP2C9*35 is determined by the impaired interaction with P450 oxidoreductase. THE PHARMACOGENOMICS JOURNAL 2013; 14:343-9. [PMID: 24322786 DOI: 10.1038/tpj.2013.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 2C9 (CYP2C9) metabolizes many clinically important drugs including warfarin and diclofenac. We have recently reported a new allelic variant, CYP2C9*35, found in a warfarin hypersensitive patient with Arg125Leu and Arg144Cys mutations. Here, we have investigated the molecular basis for the functional consequences of these polymorphic changes. CYP2C9.1 and CYP2C9-Arg144Cys expressed in human embryonic kidney 293 cells effectively metabolized both S-warfarin and diclofenac in NADPH-dependent reactions, whereas CYP2C9-Arg125Leu or CYP2C9.35 were catalytically silent. However, when NADPH was replaced by a direct electron donor to CYPs, cumene hydroperoxide, hereby bypassing the CYP oxidoreductase (POR), all variant enzymes were active, indicating unproductive interactions between CYP2C9.35 and POR. In silico analysis revealed a decrease of the electrostatic potential of CYP2C9-Arg125Leu-POR interacting surface and the loss of stabilizing salt bridges between these proteins. In conclusion, our data strongly suggest that the Arg125Leu mutation in CYP2C9.35 prevents CYP2C9-POR interactions resulting in the absence of NADPH-dependent CYP2C9-catalyzed activity in vivo, thus influencing the warfarin sensitivity in the carriers of this allele.
Collapse
|
9
|
Marino SE, Birnbaum AK, Leppik IE, Conway JM, Musib LC, Brundage RC, Ramsay RE, Pennell PB, White JR, Gross CR, Rarick JO, Mishra U, Cloyd JC. Steady-state carbamazepine pharmacokinetics following oral and stable-labeled intravenous administration in epilepsy patients: effects of race and sex. Clin Pharmacol Ther 2012; 91:483-8. [PMID: 22278332 PMCID: PMC4038037 DOI: 10.1038/clpt.2011.251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbamazepine is a widely prescribed antiepileptic drug. Owing to the lack of an intravenous formulation, its absolute bioavailability, absolute clearance, and half-life in patients at steady state have not been determined. We developed an intravenous, stable-labeled (SL) formulation in order to characterize carbamazepine pharmacokinetics in patients. Ninety-two patients received a 100-mg infusion of SL-carbamazepine as part of their morning dose. Blood samples were collected up to 96 hours after drug administration. Plasma drug concentrations were measured with liquid chromatography-mass spectrometry, and concentration-time data were analyzed using a noncompartmental approach. Absolute clearance (l/hr/kg) was significantly lower in men (0.039 ± 0.017) than in women (0.049 ± 0.018; P = 0.007) and in African Americans (0.039 ± 0.017) when compared with Caucasians (0.048 ± 0.018; P = 0.019). Half-life was significantly longer in men than in women as well as in African Americans as compared with Caucasians. The absolute bioavailability was 0.78. Sex and racial differences in clearance may contribute to variable dosing requirements and clinical response.
Collapse
Affiliation(s)
- S E Marino
- Center for Clinical and Cognitive Neuropharmacology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yuki H, Honma T, Hata M, Hoshino T. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4. Bioorg Med Chem 2011; 20:775-83. [PMID: 22197672 DOI: 10.1016/j.bmc.2011.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/25/2022]
Abstract
In drug discovery process, improvement of ADME/Tox properties of lead compounds including metabolic stability is critically important. Cytochrome P450 (CYP) is one of the major metabolizing enzymes and the prediction of sites of metabolism (SOM) on the given lead compounds is key information to modify the compounds to be more stable against metabolism. There are two factors essentially important in SOM prediction. First is accessibility of each substrate atom to the oxygenated Fe atom of heme in a CYP protein, and the other is the oxidative reactivity of each substrate atom. To predict accessibility of substrate atoms to the heme iron, conventional protein-rigid docking simulations have been applied. However, the docking simulations without consideration of protein flexibility often lead to incorrect answers in the case of very flexible proteins such as CYP3A4. In this study, we demonstrated an approach utilizing molecular dynamics (MD) simulation for SOM prediction in which multiple MD runs were executed using different initial structures. We applied this strategy to CYP3A4 and carbamazepine (CBZ) complex. Through 10 ns MD simulations started from five different CYP3A4-CBZ complex models, our approach correctly predicted SOM observed in experiments. The experimentally known epoxidized sites of CBZ by CYP3A4 were successfully predicted as the most accessible sites to the heme iron that was judged from a numerical analysis of calculated ΔG(binding) and the frequency of appearance. In contrast, the predictions using protein-rigid docking methods hardly provided the correct SOM due to protein flexibility or inaccuracy of the scoring functions. Our strategy using MD simulation with multiple initial structures will be one of the reliable methods for SOM prediction.
Collapse
Affiliation(s)
- Hitomi Yuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
11
|
Sano E, Li W, Yuki H, Liu X, Furihata T, Kobayashi K, Chiba K, Neya S, Hoshino T. Mechanism of the decrease in catalytic activity of human cytochrome P450 2C9 polymorphic variants investigated by computational analysis. J Comput Chem 2010; 31:2746-58. [DOI: 10.1002/jcc.21568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. J Mol Graph Model 2010; 28:524-32. [DOI: 10.1016/j.jmgm.2009.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 12/26/2022]
|
13
|
|
14
|
|
15
|
Li W, Ode H, Hoshino T, Liu H, Tang Y, Jiang H. Reduced Catalytic Activity of P450 2A6 Mutants with Coumarin: A Computational Investigation. J Chem Theory Comput 2009; 5:1411-20. [DOI: 10.1021/ct900018t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weihua Li
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hirotaka Ode
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|