1
|
Petrillo N, Dinh K, Vogt KA, Ma S. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations. J Chem Inf Model 2023. [PMID: 37289654 DOI: 10.1021/acs.jcim.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the catalytic mechanism of human T-cell leukemia virus type 1 (HTLV-1) protease, a retroviral aspartic protease that is a potential therapeutic target for curing HTLV-1-associated diseases. To elucidate the proteolytic cleavage mechanism, we determined the two-dimensional free energy surfaces of the HTLV-1 protease-catalyzed reactions through various possible pathways. The free energy simulations suggest that the catalytic reactions of the HTLV-1 protease occur in the following sequential steps: (1) a proton is transferred from the lytic water to Asp32', followed by the nucleophilic addition of the resulting hydroxyl to the carbonyl carbon of the scissile bond, forming a tetrahedral oxyanion intermediate, and (2) a proton is transferred from Asp32 to the peptide nitrogen of the scissile bond, leading to the spontaneous breakage of the scissile bond. The rate-limiting step of this catalytic process is the proton transfer from Asp32 to the peptide nitrogen of the scissile bond, with a free energy of activation of 21.1 kcal/mol. This free energy barrier is close to the experimentally determined free energy of activation (16.3 kcal/mol) calculated from the measured catalytic rate constant (kcat). This mechanistic study provides detailed dynamic and structural information that will facilitate the design of mechanism-based inhibitors for the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Natalie Petrillo
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kim Dinh
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kimberly A Vogt
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| |
Collapse
|
2
|
Lockbaum GJ, Henes M, Talledge N, Rusere LN, Kosovrasti K, Nalivaika EA, Somasundaran M, Ali A, Mansky LM, Yilmaz NK, Schiffer CA. Inhibiting HTLV-1 Protease: A Viable Antiviral Target. ACS Chem Biol 2021; 16:529-538. [PMID: 33619959 PMCID: PMC8126997 DOI: 10.1021/acschembio.0c00975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 μM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.
Collapse
Affiliation(s)
- Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nathaniel Talledge
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Louis M. Mansky
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
3
|
Kassay N, Mótyán JA, Matúz K, Golda M, Tőzsér J. Biochemical Characterization, Specificity and Inhibition Studies of HTLV-1, HTLV-2, and HTLV-3 Proteases. Life (Basel) 2021; 11:life11020127. [PMID: 33562087 PMCID: PMC7915765 DOI: 10.3390/life11020127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.
Collapse
Affiliation(s)
- Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
| | - Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
4
|
Hamada Y, Kiso Y. The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Expert Opin Drug Discov 2012; 7:903-22. [PMID: 22873630 DOI: 10.1517/17460441.2012.712513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A bioisostere is a powerful concept for medicinal chemistry. It allows the improvement of the stability; oral absorption; membrane permeability; and absorption, distribution, metabolism and excretion (ADME) of drug candidate, while retaining their biological properties. The term 'bioisostere' is derived from 'isostere', whose physical and chemical properties, such as steric size, hydrophobicity, and electronegativity, are similar to those of a functional or atomic group, and is considered to possess biological properties. Here, the authors highlight the recent applications of bioisosteres in drug design, mainly based on our drug discovery studies. AREAS COVERED This review discusses the application of bioisosteres for novel drug discovery with focus on the authors' drug discovery studies such as renin, HIV-protease, and β-secretase inhibitors. The authors highlight that some bioisosteres can form the scaffolding for drug candidates, namely substrate transition state, amide/ester, and carboxylic acid bioisosteres. Moreover, the authors propose the new terms 'electron-donor bioisostere' and 'conformational bioisostere' for drug discovery. EXPERT OPINION The authors discuss the importance of bioisostere's design concept based on specific interaction with the corresponding biomolecule. In addition, some strategies for drug discovery based on the bioisostere concept are introduced. Many bioisosteres, which are recognized by corresponding target biomolecules as exhibiting similar biological properties, have been reported to date; most of the recently developed bioisosteres were designed by cheminformatics approaches. Some molecular design softwares and databases are introduced.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences , Kobe Gakuin University, Minatojima, Chuo-ku, Kobe, Japan
| | | |
Collapse
|
5
|
Bhaumik P, Horimoto Y, Xiao H, Miura T, Hidaka K, Kiso Y, Wlodawer A, Yada RY, Gustchina A. Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum. J Struct Biol 2011; 175:73-84. [PMID: 21521654 DOI: 10.1016/j.jsb.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1Å, respectively. The apoenzyme crystallized in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4(3) with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nguyen JT, Kato K, Hidaka K, Kumada HO, Kimura T, Kiso Y. Design and synthesis of several small-size HTLV-I protease inhibitors with different hydrophilicity profiles. Bioorg Med Chem Lett 2011; 21:2425-9. [PMID: 21392990 DOI: 10.1016/j.bmcl.2011.02.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
The human T cell leukemia/lymphotropic virus type 1 (HTLV-I) is clinically associated with adult T cell leukemia/lymphoma, HTLV-I associated myelopathy/tropical spastic paraparesis, and a number of other chronic inflammatory diseases. To stop the replication of the virus, we developed highly potent tetrapeptidic HTLV-I protease inhibitors. In a recent X-ray crystallography study, several of our inhibitors could not form co-crystal complexes with the protease due to their high hydrophobicity. In the current study, we designed, synthesized and evaluated the HTLV-I protease inhibition potency of compounds with hydrophilic end-capping moieties with the aim of improving pharmaceutic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Nguyen JT, Kato K, Kumada HO, Hidaka K, Kimura T, Kiso Y. Maintaining potent HTLV-I protease inhibition without the P3-cap moiety in small tetrapeptidic inhibitors. Bioorg Med Chem Lett 2011; 21:1832-7. [PMID: 21316958 DOI: 10.1016/j.bmcl.2011.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The human T cell lymphotropic/leukemia virus type 1 (HTLV-I) causes adult T cell lymphoma/leukemia. The virus is also responsible for chronic progressive myelopathy and several inflammatory diseases. To stop the manufacturing of new viral components, in our previous reports, we derived small tetrapeptidic HTLV-I protease inhibitors with an important amide-capping moiety at the P(3) residue. In the current study, we removed the P(3)-cap moiety and, with great difficulty, optimized the P(3) residue for HTLV-I protease inhibition potency. We discovered a very potent and small tetrapeptidic HTLV-I protease inhibitor (KNI-10774a, IC(50)=13 nM).
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Satoh T, Li M, Nguyen JT, Kiso Y, Gustchina A, Wlodawer A. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease. J Mol Biol 2010; 401:626-41. [PMID: 20600105 PMCID: PMC2918672 DOI: 10.1016/j.jmb.2010.06.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.
Collapse
Affiliation(s)
- Tadashi Satoh
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
- Basic Research Program, SAIC-Frederick, Frederick, MD, USA
| | - Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yoshiaki Kiso
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
10
|
Bhaumik P, Xiao H, Parr CL, Kiso Y, Gustchina A, Yada RY, Wlodawer A. Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum. J Mol Biol 2009; 388:520-40. [PMID: 19285084 DOI: 10.1016/j.jmb.2009.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/25/2009] [Accepted: 03/05/2009] [Indexed: 02/07/2023]
Abstract
The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-A resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important "flap" (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang M, Nguyen JT, Kumada HO, Kimura T, Cheng M, Hayashi Y, Kiso Y. Locking the two ends of tetrapeptidic HTLV-I protease inhibitors inside the enzyme. Bioorg Med Chem 2008; 16:6880-90. [PMID: 18558491 DOI: 10.1016/j.bmc.2008.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
Adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy are only some of the more common end results of an infection with a human T-cell leukemia virus type 1 (HTLV-I). Expanding from our previous reports, we synthesized all different permutations of tetrapeptidic HTLV-I protease inhibitors using at least eight P(3)-cap and five P(1)(')-cap moieties. The inhibitors exhibited over 97% inhibition against HIV-1 protease and a wide range of inhibitory activity against HTLV-I protease.
Collapse
Affiliation(s)
- Meihui Zhang
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | |
Collapse
|