1
|
Schmitt C, Mauker P, Vepřek NA, Gierse C, Meiring JCM, Kuch J, Akhmanova A, Dehmelt L, Thorn-Seshold O. A Photocaged Microtubule-Stabilising Epothilone Allows Spatiotemporal Control of Cytoskeletal Dynamics. Angew Chem Int Ed Engl 2024; 63:e202410169. [PMID: 38961560 DOI: 10.1002/anie.202410169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon irradiation by violet/blue light to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.
Collapse
Affiliation(s)
- Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Philipp Mauker
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nynke A Vepřek
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Carolin Gierse
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Jürgen Kuch
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Leif Dehmelt
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| |
Collapse
|
2
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Schulte AM, Vivien Q, Leene JH, Alachouzos G, Feringa BL, Szymanski W. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Angew Chem Int Ed Engl 2024:e202411380. [PMID: 39140843 DOI: 10.1002/anie.202411380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Quentin Vivien
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Julia H Leene
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center, Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
4
|
Yin Q, Fu W, Hu X, Xu Z, Li Z, Shao X. Application of TNB in dual photo-controlled release of phenamacril, imidacloprid, and imidacloprid synergist. Photochem Photobiol 2024. [PMID: 38445797 DOI: 10.1111/php.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Pesticides can improve crops' yield and quality, but unreasonable applications of pesticides lead to waste of pesticides which are further accumulated in the environment and threaten human health. Developing the release of controlled drugs can improve the utilization rate of pesticides. Among these methods, light-controlled release is a new technology of controlled release, which can realize spatiotemporal delivery of drugs by light. Four compounds, named Imidacloprid-Thioacetal o-nitrobenzyl-Phenamacril (IMI-TNB-PHE), Imidacloprid-Thioacetal o-nitrobenzyl- Imidacloprid (IMI-TNB-IMI), Phenamacril-Thioacetal o-nitrobenzyl-Phenamacril (PHE-TNB-PHE), and Imidacloprid-Thioacetal o-nitrobenzyl-Imidacloprid Synergist (IMI-TNB-IMISYN), were designed and synthesized by connecting thioacetal o-nitrobenzyl (TNB) with pesticides TNB displaying simple and efficient optical properties in this work. Dual photo-controlled release of pesticides including two molecules of IMI or PHE, both IMI and PHE, as well as IMI and IMISYN were, respectively, studied in this paper. Insecticidal/fungicidal activities of the photosensitive pesticides showed 2-4 times increments if they were exposed to light. In addition, a synergistic effect was observed after the light-controlled release of IMI-TNB-IMISYN, which was consistent with the effect of IMISYN. The results demonstrated whether dual photo-controlled release of the same or different pesticide molecules could be achieved with a TNB linker with spatiotemporal precision. We envisioned that TNB will be an innovative photosensitive protective group for light-dependent application of agrochemicals in the future.
Collapse
Affiliation(s)
- Qi Yin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyue Hu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Tsai CY, Chen PH, Chen AL, Wang TSA. Spatiotemporal Investigation of Intercellular Heterogeneity via Multiple Photocaged Probes. Chemistry 2023; 29:e202301067. [PMID: 37382047 DOI: 10.1002/chem.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Po-Hsun Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
6
|
Eli S, Castagna R, Mapelli M, Parisini E. Recent Approaches to the Identification of Novel Microtubule-Targeting Agents. Front Mol Biosci 2022; 9:841777. [PMID: 35425809 PMCID: PMC9002125 DOI: 10.3389/fmolb.2022.841777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and β-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.
Collapse
Affiliation(s)
- Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rossella Castagna
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
| | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| |
Collapse
|
7
|
Hogenkamp F, Hilgers F, Bitzenhofer NL, Ophoven V, Haase M, Bier C, Binder D, Jaeger K, Drepper T, Pietruszka J. Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. Chembiochem 2022; 23:e202100467. [PMID: 34750949 PMCID: PMC9299732 DOI: 10.1002/cbic.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Indexed: 12/05/2022]
Abstract
Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Vera Ophoven
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Mona Haase
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Claus Bier
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Dennis Binder
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| |
Collapse
|
8
|
Zhang X, Guan G, Wang Z, Lv L, Chávez-Madero C, Chen M, Yan Z, Yan S, Wang L, Li Q. Drug release evaluation of Paclitaxel/Poly-L-Lactic acid nanoparticles based on a microfluidic chip. Biomed Microdevices 2021; 23:57. [PMID: 34762163 DOI: 10.1007/s10544-021-00596-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA. .,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guotao Guan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenxing Wang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Lv
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Carolina Chávez-Madero
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Departamento de Ingeniería Mecatrónica Y Electrónica, Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, NL, México
| | - Mo Chen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhenhao Yan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Yan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Wang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Li
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China. .,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Elamri I, Abdellaoui C, Bains JK, Hohmann KF, Gande SL, Stirnal E, Wachtveitl J, Schwalbe H. Wavelength-Selective Uncaging of Two Different Photoresponsive Groups on One Effector Molecule for Light-Controlled Activation and Deactivation. J Am Chem Soc 2021; 143:10596-10603. [PMID: 34236854 DOI: 10.1021/jacs.1c02817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photocleavable protecting groups (PPGs) play a pivotal role in numerous studies. They enable controlled release of small effector molecules to induce biochemical function. The number of PPGs attached to a variety of effector molecules has grown rapidly in recent years satisfying the high demand for new applications. However, until now molecules carrying PPGs have been designed to activate function only in a single direction, namely the release of the effector molecule. Herein, we present the new approach Two-PPGs-One-Molecule (TPOM) that exploits the orthogonal photolysis of two photoprotecting groups to first release the effector molecule and then to modify it to suppress its induced effect. The moiety resembling the tyrosyl side chain of the translation inhibitor puromycin was synthetically modified to the photosensitive ortho-nitrophenylalanine that cyclizes upon near UV-irradiation to an inactive puromycin cinnoline derivative. Additionally, the modified puromycin analog was protected by the thio-coumarylmethyl group as the second PPG. This TPOM strategy allows an initial wavelength-selective activation followed by a second light-induced deactivation. Both photolysis processes were spectroscopically studied in the UV/vis- and IR-region. In combination with quantum-chemical calculations and time-resolved NMR spectroscopy, the photoproducts of both activation and deactivation steps upon illumination were characterized. We further probed the translation inhibition effect of the new synthesized puromycin analog upon light activation/deactivation in a cell-free GFP translation assay. TPOM as a new method for precise triggering activation/deactivation of effector molecules represents a valuable addition for the control of biological processes with light.
Collapse
Affiliation(s)
- Isam Elamri
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Chahinez Abdellaoui
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Jasleen Kaur Bains
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Katharina Felicitas Hohmann
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Santosh Lakshmi Gande
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Elke Stirnal
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany
| |
Collapse
|
10
|
Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin. Nat Commun 2021; 12:4171. [PMID: 34234116 PMCID: PMC8263607 DOI: 10.1038/s41467-021-24392-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.
Collapse
|
11
|
Targeted Cancer Therapy Using Compounds Activated by Light. Cancers (Basel) 2021; 13:cancers13133237. [PMID: 34209493 PMCID: PMC8269035 DOI: 10.3390/cancers13133237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer chemotherapy is affected by a modest selectivity and toxic side effects of pharmacological interventions. Among novel approaches to overcome this limitation and to bring to therapy more potent and selective agents is the use of light for selective activation of anticancer compounds. In this review, we focus on the anticancer applications of two light-activated approaches still in the experimental phase: photoremovable protecting groups ("photocages") and photoswitches. We describe the structural considerations behind the development of novel compounds and the plethora of assays used to confirm whether the photochemical and pharmacological properties are meeting the stringent criteria for an efficient in vivo light-dependent activation. Despite its immense potential, light activation brings many challenges, and the complexity of the task is very demanding. Currently, we are still deeply in the phase of pharmacological tools, but the vivid research and rapid development bring the light of hope for potential clinical use.
Collapse
|
12
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|
14
|
Bojtár M, Németh K, Domahidy F, Knorr G, Verkman A, Kállay M, Kele P. Conditionally Activatable Visible-Light Photocages. J Am Chem Soc 2020; 142:15164-15171. [PMID: 32786783 PMCID: PMC7472520 DOI: 10.1021/jacs.0c07508] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The proof of concept for conditionally
activatable photocages is
demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine
form is disabled in terms of light-induced cargo release, however,
bioorthogonal transformation of the modulating tetrazine moiety results
in fully restored photoresponsivity. Irradiation of such a “click-armed”
photocage with blue light leads to fast and efficient release of a
set of caged model species, conjugated via various linkages. Live-cell
applicability of the concept was also demonstrated by the conditional
release of a fluorogenic probe using mitochondrial pretargeting.
Collapse
Affiliation(s)
- Márton Bojtár
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Farkas Domahidy
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Knorr
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary.,Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - András Verkman
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
15
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
16
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
17
|
Dupart PS, Mitra K, Lyons CE, Hartman MCT. Photo-controlled delivery of a potent analogue of doxorubicin. Chem Commun (Camb) 2019; 55:5607-5610. [PMID: 31021353 PMCID: PMC6643956 DOI: 10.1039/c9cc02050k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Highly cytotoxic agents have found an important niche in targeted anticancer therapy. Here we develop a new light release strategy for the targeting of one of these agents, 2-pyrrolinodoxorubicin, showing dramatic enhancements in toxicity with light and single digit nM potency.
Collapse
Affiliation(s)
- Patrick S Dupart
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, 23219, Virginia, USA
| | - Koushambi Mitra
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, 23219, Virginia, USA
| | - Charles E Lyons
- Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, 23219, Virginia, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, 23219, Virginia, USA
| |
Collapse
|
18
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
19
|
Suzuki AZ, Sekine R, Takeda S, Aikawa R, Shiraishi Y, Hamaguchi T, Okuno H, Tamamura H, Furuta T. A clickable caging group as a new platform for modular caged compounds with improved photochemical properties. Chem Commun (Camb) 2019; 55:451-454. [DOI: 10.1039/c8cc07981a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A clickable caging group was designed, which was applied to the synthesis of caged paclitaxels with improved physical and photochemical properties.
Collapse
Affiliation(s)
- Akinobu Z. Suzuki
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Ryota Sekine
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Shiori Takeda
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Ryosuke Aikawa
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Yukiko Shiraishi
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Tomomi Hamaguchi
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Hiroyuki Okuno
- Graduate School of Medical and Dental Sciences
- Kagoshima University
- Kagoshima
- Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Chiyoda-ku
- Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| |
Collapse
|
20
|
Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018; 140:15764-15773. [DOI: 10.1021/jacs.8b08249] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Michela Libergoli
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
21
|
Abstract
Photoactivated chemotherapy is an approach where a biologically active compound is protected against interaction with the cell environment by a light-cleavable protecting group, and unprotected by light irradiation. As such, PACT represents a major scientific opportunity for developing new bioactive inorganic compounds. However, the societal impact of this approach will only take off if the PACT field is used to address real societal challenges, i.e., therapeutic questions that make sense in a clinical context, rather than purely chemical questions. In particular, I advocate here that the field has become mature enough to switch from a compound-based approach, where a particular cancer model is chosen only to demonstrate the utility of a compound, to a disease-based approach, where the question of which disease to cure comes first: which PACT compound should I make to solve that particular clinical problem? The advantages and disadvantages of PACT vs. other phototherapeutic techniques are discussed, and a roadmap towards real clinical applications of PACT is drawn.
Collapse
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
22
|
van Wilderen LJGW, Neumann C, Rodrigues-Correia A, Kern-Michler D, Mielke N, Reinfelds M, Heckel A, Bredenbeck J. Picosecond activation of the DEACM photocage unravelled by VIS-pump-IR-probe spectroscopy. Phys Chem Chem Phys 2018; 19:6487-6496. [PMID: 28197598 DOI: 10.1039/c6cp07022a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced ultrafast uncaging process of the [7-(diethylamino)coumarin-4-yl]methyl (DEACM) cage is measured by time-resolved visible-pump-infrared-probe spectroscopy, and supported by steady-state absorption spectroscopy in the visible and infrared spectral regions. Understanding the uncaging process is important because its favorable properties make DEACM an interesting case for chemical and biological applications. It has a convenient absorption in the visible spectral range, and is relatively easily modified to carry leaving groups (LGs) such as nucleotides, substrates or inhibitors, which are inactive when bound and active when released. Previous work suggested a lower limit for the uncaging rate, which places it among the fastest available cages. Here, we determine the photodissociation directly to occur on the picosecond time scale by monitoring the appearance of the released LG in the infrared spectral region. In the present study, azide (N3) is chosen as an LG to monitor photodissociation because its vibrational mode is spectrally isolated (hence easy to follow) and its absorption wavenumber is sensitive to local structural rearrangements. The uncaging process is recorded up to 3 nanoseconds and compared to the collected steady-state spectra. The free LG appears on a picosecond time scale, rendering this one of the fastest known cages. No evidence is found for a tight-ion pair (TIP) preceding the free LG. The uncaging mechanism is found to be slowed down upon the addition of water to acetonitrile.
Collapse
Affiliation(s)
- L J G W van Wilderen
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - C Neumann
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - A Rodrigues-Correia
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - D Kern-Michler
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - N Mielke
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - M Reinfelds
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - A Heckel
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - J Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| |
Collapse
|
23
|
Asad N, Deodato D, Lan X, Widegren MB, Phillips DL, Du L, Dore TM. Photochemical Activation of Tertiary Amines for Applications in Studying Cell Physiology. J Am Chem Soc 2017; 139:12591-12600. [PMID: 28806084 DOI: 10.1021/jacs.7b06363] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Representative tertiary amines were linked to the 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting group (PPG) to create photoactivatable forms suitable for use in studying cell physiology. The photoactivation of tamoxifen and 4-hydroxytamoxifen, which can be used to activate Cre recombinase and CRISPR-Cas9 gene editing, demonstrated that highly efficient release of bioactive molecules could be achieved through one- and two-photon excitation (1PE and 2PE). CyHQ-protected anilines underwent a photoaza-Claisen rearrangement instead of releasing amines. Time-resolved spectroscopic studies revealed that photorelease of the tertiary amines was extremely fast, occurring from a singlet excited state of CyHQ on the 70 ps time scale.
Collapse
Affiliation(s)
- Naeem Asad
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Davide Deodato
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Xin Lan
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Magnus B Widegren
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Timothy M Dore
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates.,Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Hikage S, Nishiyama Y, Sasaki Y, Tanimoto H, Morimoto T, Kakiuchi K. Quantitative Photodeprotection Assessment of Caged Resveratrol by Fluorescence Measurement. ACS OMEGA 2017; 2:2300-2307. [PMID: 30023661 PMCID: PMC6044813 DOI: 10.1021/acsomega.7b00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 06/08/2023]
Abstract
For monitoring the regenerated bioactivity of a masked bioactive compound, resveratrol (a luciferase inhibitor) was selected to target such a compound. Caged resveratrol, masked by thiochromone-type photolabile-protecting groups was synthesized in the study. Each caged resveratrol showed lower bioactivity when compared to that shown by the original molecule. After photoirradiation, the original bioactivity was found to be regenerated. Furthermore, the fluorescent compound derived from the thiochromone-type photolabile-protecting groups was generated simultaneously. A linear correlation was observed between the regenerated bioactivity and generated fluorescence intensity. Thus, we quantitatively monitored the recovered bioactivity successfully by measuring the fluorescence.
Collapse
|
25
|
Gandioso A, Contreras S, Melnyk I, Oliva J, Nonell S, Velasco D, García-Amorós J, Marchán V. Development of Green/Red-Absorbing Chromophores Based on a Coumarin Scaffold That Are Useful as Caging Groups. J Org Chem 2017; 82:5398-5408. [PMID: 28467700 DOI: 10.1021/acs.joc.7b00788] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the design, synthesis, and spectroscopic characterization of a series of push-pull chromophores based on a novel coumarin scaffold in which the carbonyl of the lactone function of the original coumarin dyes has been replaced by the cyano(4-nitrophenyl)methylene moiety. The skeleton of the compounds was synthesized by condensation of a thiocoumarin precursor with the corresponding arylacetonitrile derivatives, and their photophysical properties were fine-tuned through the incorporation of electron-withdrawing groups (EWGs) like nitro and cyano at the phenyl ring, leading to absorption in the green to red region. Although fluorescence emission was weakened or even canceled upon introduction of two or three strong EWGs, the emission of the mononitro-containing coumarin derivatives in the red region upon excitation with green light is noticeable, as are their significantly large Stokes shifts. The new coumarin derivatives can be useful as photocleavable protecting groups, as demonstrated through the synthesis and characterization of a series of coumarin-based photocages of benzoic acid. Preliminary photolysis studies with green light have demonstrated that the structure of the coumarin chromophore influences the rate of the uncaging process, opening the way to exploiting these new coumarin scaffolds as caging groups that can be removed with visible light.
Collapse
Affiliation(s)
- Albert Gandioso
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Sara Contreras
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ivanna Melnyk
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Javier Oliva
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull , E-08017 Barcelona, Spain
| | - Dolores Velasco
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona , E-08028 Barcelona, Spain
| | - Jaume García-Amorós
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Vicente Marchán
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
26
|
Wong PT, Tang S, Cannon J, Mukherjee J, Isham D, Gam K, Payne M, Yanik SA, Baker JR, Choi SK. A Thioacetal Photocage Designed for Dual Release: Application in the Quantitation of Therapeutic Release by Synchronous Reporter Decaging. Chembiochem 2017; 18:126-135. [PMID: 27902870 PMCID: PMC5213739 DOI: 10.1002/cbic.201600494] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho-nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6-nitroverataldehyde, three drug-fluorophore conjugates were synthesized: Taxol-TNB-fluorescein, Taxol-TNB-coumarin, and doxorubicin-TNB-coumarin, and long-wavelength UVA light-triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell-based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real-time monitoring of drug activation at the delivery site.
Collapse
Affiliation(s)
- Pamela T Wong
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jhindan Mukherjee
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Danielle Isham
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
| | - Kristina Gam
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
| | - Michael Payne
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
| | - Sean A Yanik
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, 1150 W. Medical Ctr. Drive, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Gandioso A, Cano M, Massaguer A, Marchán V. A Green Light-Triggerable RGD Peptide for Photocontrolled Targeted Drug Delivery: Synthesis and Photolysis Studies. J Org Chem 2016; 81:11556-11564. [PMID: 27934458 DOI: 10.1021/acs.joc.6b02415] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe for the first time the synthesis and photochemical properties of a coumarin-caged cyclic RGD peptide and demonstrate that uncaging can be efficiently performed with biologically compatible green light. This was accomplished by using a new dicyanocoumarin derivative (DEAdcCE) for the protection of the carboxyl function at the side chain of the aspartic acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and photolysis efficiency. The shielding effect of a methyl group incorporated in the coumarin derivative near the ester bond linking both moieties in combination with the use of acidic additives such as HOBt or Oxyma during the basic Fmoc-removal treatment were found to be very effective for minimizing aspartimide-related side reactions. In addition, a conjugate between the dicyanocoumarin-caged cyclic RGD peptide and ruthenocene, which was selected as a metallodrug model cargo, has been synthesized and characterized. The fact that green-light triggered photoactivation can be efficiently performed both with the caged peptide and with its ruthenocenoyl bioconjugate reveals great potential for DEAdcCE-caged peptide sequences as selective drug carriers in the context of photocontrolled targeted anticancer strategies.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| | - Marc Cano
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona , E-17071 Girona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| |
Collapse
|
28
|
Chitose Y, Abe M, Furukawa K, Katan C. Design, Synthesis, and Reaction of π-Extended Coumarin-based New Caged Compounds with Two-photon Absorption Character in the Near-IR Region. CHEM LETT 2016. [DOI: 10.1246/cl.160586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
30
|
Thapa P, Li M, Bio M, Rajaputra P, Nkepang G, Sun Y, Woo S, You Y. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. J Med Chem 2016; 59:3204-14. [PMID: 26974508 DOI: 10.1021/acs.jmedchem.5b01971] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.
Collapse
Affiliation(s)
- Pritam Thapa
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Mengjie Li
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Moses Bio
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Pallavi Rajaputra
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Gregory Nkepang
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Yajing Sun
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Sukyung Woo
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Youngjae You
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
31
|
Leonidova A, Mari C, Aebersold C, Gasser G. Selective Photorelease of an Organometallic-Containing Enzyme Inhibitor. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Leonidova
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Christine Aebersold
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| |
Collapse
|
32
|
Carling CJ, Olejniczak J, Foucault-Collet A, Collet G, Viger ML, Nguyen Huu VA, Duggan BM, Almutairi A. Efficient Red Light Photo-Uncaging of Active Molecules in Water Upon Assembly into Nanoparticles. Chem Sci 2016; 7:2392-2398. [PMID: 27014436 PMCID: PMC4800316 DOI: 10.1039/c5sc03717d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
We introduce a means of efficiently photo-uncaging active compounds from amino-1,4-benzoquinone in aqueous environments. Aqueous photochemistry of this photocage with one-photon red light is typically not efficient unless the photocaged molecules are allowed to assemble into nanoparticles. A variety of biologically active molecules were functionalized with the photocage and subsequently formulated into water-dispersible nanoparticles. Red light irradiation through various mammalian tissues achieved efficient photo-uncaging. Co-encapsulation of NIR fluorescent dyes and subsequent photomodulation provides a NIR fluorescent tool to assess both particle location and successful photorelease.
Collapse
Affiliation(s)
- Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
| | - Alexandra Foucault-Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
| | - Guillaume Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
| | - Mathieu L. Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
| | - Viet Anh Nguyen Huu
- Department of Nanoengineering
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
.
- Department of Nanoengineering
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
- Department of Materials Science and Engineering
, University of California, San Diego
,
9500 Gilman Dr.
, La Jolla
, California 92093
, USA
| |
Collapse
|
33
|
The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2015; 21:42. [PMID: 26729077 PMCID: PMC6273601 DOI: 10.3390/molecules21010042] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/04/2022] Open
Abstract
Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.
Collapse
|
34
|
Leonidova A, Anstaett P, Pierroz V, Mari C, Spingler B, Ferrari S, Gasser G. Induction of Cytotoxicity through Photorelease of Aminoferrocene. Inorg Chem 2015; 54:9740-8. [DOI: 10.1021/acs.inorgchem.5b01332] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Leonidova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Institute
of Molecular Cancer Research, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefano Ferrari
- Institute
of Molecular Cancer Research, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
35
|
Wong PT, Choi SK. Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chem Rev 2015; 115:3388-432. [DOI: 10.1021/cr5004634] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Leonidova A, Pierroz V, Rubbiani R, Lan Y, Schmitz AG, Kaech A, Sigel RKO, Ferrari S, Gasser G. Photo-induced uncaging of a specific Re(i) organometallic complex in living cells. Chem Sci 2014. [DOI: 10.1039/c3sc53550a] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Zhang H, Huang R, Cang H, Cai Z, Sun B. Graphene oxide–coumarin derivative conjugate as activatable nanoprobe for intracellular imaging with one- or two-photon excitation. J Mater Chem B 2014; 2:1742-1750. [DOI: 10.1039/c3tb21656j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Bort G, Gallavardin T, Ogden D, Dalko PI. From One-Photon to Two-Photon Probes: “Caged” Compounds, Actuators, and Photoswitches. Angew Chem Int Ed Engl 2013; 52:4526-37. [DOI: 10.1002/anie.201204203] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/07/2012] [Indexed: 01/09/2023]
|
39
|
Bort G, Gallavardin T, Ogden D, Dalko PI. Von Ein- zu Zwei-Photonen-Sonden: photoaktivierbare Reagentien, Aktuatoren und Photoschalter. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 2013; 113:119-91. [PMID: 23256727 PMCID: PMC3557858 DOI: 10.1021/cr300177k] [Citation(s) in RCA: 1253] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ji W, Li N, Chen D, Qi X, Sha W, Jiao Y, Xu Q, Lu J. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J Mater Chem B 2013; 1:5942-5949. [DOI: 10.1039/c3tb21206h] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Tunbridge GA, Baruchello R, Caggiano L. Mild and efficient capture and functionalisation of CO2 using silver(i) oxide and application to 13C-labelled dialkyl carbonates. RSC Adv 2013. [DOI: 10.1039/c3ra23281f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Kumar D, Mishra BA, Chandra Shekar KP, Kumar A, Akamatsu K, Kurihara R, Ito T. Novel porphyrin–psoralen conjugates: synthesis, DNA interaction and cytotoxicity studies. Org Biomol Chem 2013; 11:6675-9. [DOI: 10.1039/c3ob41224e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Hemantha HP, Narendra N, Sureshbabu VV. Total chemical synthesis of polypeptides and proteins: chemistry of ligation techniques and beyond. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Battogtokh G, Liu HB, Bae SM, Chaturvedi PK, Kim YW, Kim IW, Ahn WS. In vitro phototoxicity and dark-toxicity of a novel synthesized pyropheophorbide-a-paclitaxel conjugate against cancer cell lines. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612500757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthesis of pyropheophorbide-a-paclitaxel (PPa-PTX) conjugate was performed in high yield with the aim of searching for an optimal agent for cancer treatment. After synthesis, the conjugate was confirmed to be linked through an ester bond at the 2′ position of the paclitaxel moiety using multi-nuclear magnetic resonance spectroscopy. Phototoxicity of PPa and PPa-PTX conjugate, as well as PTX, was evaluated with three human cancer cell lines (HeLa, CaSki and TC-1). The new conjugate at 0.01–0.06 μM displayed 20–40% higher phototoxicity in HeLa and CaSki cell lines than free PPa and PTX. Furthermore, cellular uptake of these bio-molecules was examined by confocal laser scanning microscopy. Although PPa-PTX showed a delayed uptake compared to PPa, it penetrated completely into cells within 24 h incubation.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Hai-Bo Liu
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Su-Mi Bae
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Pankaj K. Chaturvedi
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Yong-Wan Kim
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - In-Wook Kim
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Woong Shick Ahn
- Cancer Research Institute, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| |
Collapse
|
46
|
Gropeanu RA, Baumann H, Ritz S, Mailänder V, Surrey T, del Campo A. Phototriggerable 2',7-caged paclitaxel. PLoS One 2012; 7:e43657. [PMID: 22970137 PMCID: PMC3435387 DOI: 10.1371/journal.pone.0043657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/23/2012] [Indexed: 01/11/2023] Open
Abstract
Three different variants of photoactivatable caged paclitaxel (PTX) have been synthesized and their bioactivity was characterized in in vitro assays and in living cells. The caged PTXs contain the photoremovable chromophore 4,5-dimethoxy-2-nitrobenzyloxycarbonyl (Nvoc) attached to position C7, C2' and to both of these positions via a carbonate bond. Single caged PTXs remained biologically active even at low dosages. Double caging was necessary in order to fully inhibit its activity and to obtain a phototriggerable PTX that can be applied successfully at commonly used concentrations. Irradiation of solutions containing the double caged PTX allowed dose-dependent delivery of functional PTX. Light-triggered stabilization of microtubule assemblies in vitro and in vivo by controlled light exposure of tubulin solutions or cell cultures containing caged PTX was demonstrated. Short light exposure under a fluorescence microscope allowed controlled delivery of free PTX during imaging.
Collapse
Affiliation(s)
| | - Hella Baumann
- Cancer Research United Kingdom, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Sandra Ritz
- Max-Planck-Institut für Polymerforschung, Mainz, Germany
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung, Mainz, Germany
- 3rd Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Surrey
- Cancer Research United Kingdom, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | |
Collapse
|
47
|
Givens RS, Rubina M, Wirz J. Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem Photobiol Sci 2012; 11:472-88. [PMID: 22344608 PMCID: PMC3422890 DOI: 10.1039/c2pp05399c] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/20/2012] [Indexed: 12/12/2022]
Abstract
Most applications of photoremovable protecting groups have used o-nitrobenzyl compounds and their (often commercially available) derivatives that, however, have several disadvantages. The focus of this review is on applications of the more recently developed title compounds, which are especially well suited for time-resolved biochemical and physiological investigations, because they release the caged substrates in high yield within a few nanoseconds or less. Together, these two chromophores cover the action spectrum for photorelease from >700 nm to 250 nm.
Collapse
Affiliation(s)
- Richard S. Givens
- Department of Chemistry, University of Kansas, Kansas, USA; Tel: +1 785 864 3846
| | - Marina Rubina
- Department of Chemistry, University of Kansas, Kansas, USA; Tel: +1 785 864 1574
| | - Jakob Wirz
- Department of Chemistry, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; Tel: +41 76 413 47 48
| |
Collapse
|
48
|
Lin Q, Bao C, Fan G, Cheng S, Liu H, Liu Z, Zhu L. 7-Amino coumarin based fluorescent phototriggers coupled with nano/bio-conjugated bonds: Synthesis, labeling and photorelease. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30357d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Huang Q, Bao C, Ji W, Wang Q, Zhu L. Photocleavable coumarin crosslinkers based polystyrene microgels: phototriggered swelling and release. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33789d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Xing J, Deng L, Xie C, Xiao L, Zhai Y, Jin F, Li Y, Dong A. Methoxy poly(ethylene glycol)-b
-poly(octadecanoic anhydride)-b
-methoxy poly(ethylene glycol) amphiphilic triblock copolymer nanoparticles as delivery vehicles for paclitaxel. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.1563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|