1
|
Lv J, Li ZH, Deng AJ, Qin HL. A unified total synthesis of benzo[ d][1,3]dioxole-type benzylisoquinoline alkaloids of aporphines, coptisines, and dibenzopyrrocolines. Org Biomol Chem 2021; 20:658-666. [PMID: 34951439 DOI: 10.1039/d1ob02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first total synthesis of (S)-(+)-ovigerine, (S)-(+)-N-formylovigerine, and (6aS,6a'S)-(+)-ovigeridimerine of aporphine alkaloids with a benzo[d][1,3]dioxole structure feature was established. The strategy was based upon the well-known Pd-catalyzed arylation to set the aporphine framework, and Noyori asymmetric hydrogenation followed by diastereoselective resolution to achieve excellent enantioselectivity. By slightly modifying the total synthetic route and strategically combining it with a aza-Michael addition, Bischler-Napieralski reaction and N-arylation, this methodology was also applied to the total syntheses of benzo[d][1,3]dioxole-type benzylisoquinoline alkaloids of coptisines and dibenzopyrrocolines, including two impatiens, tetrahydrocoptisine, and quaternary coptisine bromide of coptisines and two dibenzopyrrocoline analogues, with the syntheses of all of these target compounds being efficient. Among the nine synthesized compounds, the total syntheses of the three aporphines and the two impatiens, all with ee values of greater than 99%, were reported for the first time. This work also represents the first unification of synthetic routes for the total synthesis of benzo[d][1,3]dioxole-type aporphines, coptisines, and dibenzopyrrocolines.
Collapse
Affiliation(s)
- Jie Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhi-Hong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - An-Jun Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hai-Lin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Karki A, Namballa HK, Alberts I, Harding WW. Structural manipulation of aporphines via C10 nitrogenation leads to the identification of new 5-HT 7AR ligands. Bioorg Med Chem 2020; 28:115578. [PMID: 32631561 DOI: 10.1016/j.bmc.2020.115578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022]
Abstract
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.
Collapse
Affiliation(s)
- Anupam Karki
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Ian Alberts
- LaGuardia Community College, Department of Chemistry, 31-10 Thompson Avenue, LIC, NY 11104, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA; Program in Chemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA.
| |
Collapse
|
3
|
Majnooni S, Duffield J, Price J, Khosropour AR, Zali-Boeini H, Beyzavi H. Aryliodoazide Synthons: A Different Approach for Diversified Synthesis of 2-Aminothiazole, 1,3-Thiazole, and 1,3-Selenazole Scaffolds. ACS COMBINATORIAL SCIENCE 2019; 21:516-521. [PMID: 31243975 DOI: 10.1021/acscombsci.9b00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several straightforward and practical processes have been established for the construction of 2-aminothiazoles, 1,3-thiazoles and 1,3-selenazoles from aryliodoazides. These strategies successfully proceed with a wide spectrum of substituted thioamides and its derivatives producing the resulting five-membered heterocycles obtained in satisfactory yields. The unique features of these protocols are operational simplicity and highly functional group tolerance, which make them convenient and practical routes for the preparation of various libraries of 2-aminothiazoles, 1,3-thiazoles, and 1,3-selenazoles.
Collapse
Affiliation(s)
- Sahar Majnooni
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Joseph Duffield
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jessica Price
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ahmad Reza Khosropour
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017; 12:583-597. [DOI: 10.1080/17460441.2017.1319357] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Madapa S, Harding WW. Semisynthetic Studies on and Biological Evaluation of N-Methyllaurotetanine Analogues as Ligands for 5-HT Receptors. JOURNAL OF NATURAL PRODUCTS 2015; 78:722-729. [PMID: 25695425 DOI: 10.1021/np500893h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
N-Methyllaurotetanine (1) has been reported to display good affinity for the 5-HT1A receptor, but no structure-affinity studies have been performed to date. The commercially available alkaloid boldine (2) was used as the starting material for synthesis of various C-9 alkoxy analogues of N-methyllaurotetanine in order to gauge the effect of C-9 alkylation on affinity and selectivity at 5-HT1A, 5-HT2A, and 5-HT7 receptors. Mitsunobu reactions were implemented in the alkylation steps leading to the analogues. Modest improvement in 5-HT1A affinity was observed upon alkylation for most analogues. Thus, the C-9 hydroxy group of 1 is not critical for affinity to the 5-HT1A receptor. Some analogues displayed high affinity for the 5-HT7 receptor, comparable to N-methyllaurotetanine, with moderate selectivity vs 5-HT1A and 5-HT2A receptors.
Collapse
Affiliation(s)
- Sudharshan Madapa
- Department of Chemistry, Hunter College, City University of New York, , 695 Park Avenue, New York, New York 10065, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, , 695 Park Avenue, New York, New York 10065, United States
| |
Collapse
|
6
|
Thiazole: a promising heterocycle for the development of potent CNS active agents. Eur J Med Chem 2014; 92:1-34. [PMID: 25544146 DOI: 10.1016/j.ejmech.2014.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
Abstract
Thiazole is a valuable scaffold in the field of medicinal chemistry and has accounted to display a variety of biological activities. Thiazole and its derivatives have attracted continuing interest to design various novel CNS active agents. In the past few decades, thiazoles have been widely used to develop a variety of therapeutic agents against numerous CNS targets. Thiazole containing drug molecules are currently being used in treatment of various CNS disorders and a number of thiazole derivatives are also presently in clinical trials. A lot of research has been carried out on thiazole and their analogues, which has proved their efficacy to overcome several CNS disorders in rodent as well as primate models. The aim of present review is to highlights diverse CNS activities displayed by thiazole and their derivatives. SAR of this nucleus has also been well discussed. This review covers the recent updates present in literature and will surely provide a greater insight for the designing and development of potent thiazole based CNS active agents in future.
Collapse
|
7
|
Li Z, Huang J, Sun H, Zhou S, Guo L, Zhou Y, Zhen X, Liu H. Design, synthesis and evaluation of benzo[a]thieno[3,2-g]quinolizines as novel l-SPD derivatives possessing dopamine D1, D2 and serotonin 5-HT1A multiple action profiles. Bioorg Med Chem 2014; 22:5838-46. [PMID: 25308766 DOI: 10.1016/j.bmc.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23 e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23 d and 23 e were more potent than l-SPD at D3 receptor. According to the functional assays, 23 d and 23 e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.
Collapse
Affiliation(s)
- Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jiye Huang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Haifeng Sun
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Shengbin Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Lin Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Reinart-Okugbeni R, Vonk A, Uustare A, Gyulai Z, Sipos A, Rinken A. 1-substituted apomorphines as potent dopamine agonists. Bioorg Med Chem 2013; 21:4143-50. [DOI: 10.1016/j.bmc.2013.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/05/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
|
9
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
10
|
Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D1, D2 and serotonin 5-HT1A multi-action profile. Bioorg Med Chem 2013; 21:856-68. [DOI: 10.1016/j.bmc.2012.12.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
|
11
|
Zhang H, Ye N, Zhou S, Guo L, Zheng L, Liu Z, Gao B, Zhen X, Zhang A. Identification of N-Propylnoraporphin-11-yl 5-(1,2-Dithiolan-3-yl)pentanoate as a New Anti-Parkinson's Agent Possessing a Dopamine D2 and Serotonin 5-HT1A Dual-Agonist Profile. J Med Chem 2011; 54:4324-38. [DOI: 10.1021/jm200347t] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai Zhang
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | | | | | | - Longtai Zheng
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | | - Bo Gao
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | - Xuechu Zhen
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | |
Collapse
|
12
|
Ye N, Wu Q, Zhu L, Zheng L, Gao B, Zhen X, Zhang A. Further SAR study on 11-O-substituted aporphine analogues: Identification of highly potent dopamine D3 receptor ligands. Bioorg Med Chem 2011; 19:1999-2008. [DOI: 10.1016/j.bmc.2011.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
|
13
|
Synthesis of morphinans with diversely functionalized benzoxazole moieties. MONATSHEFTE FUR CHEMIE 2010. [DOI: 10.1007/s00706-010-0380-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Liu Z, Zhang H, Ye N, Zhang J, Wu Q, Sun P, Li L, Zhen X, Zhang A. Synthesis of dihydrofuroaporphine derivatives: identification of a potent and selective serotonin 5-HT 1A receptor agonist. J Med Chem 2010; 53:1319-28. [PMID: 20041669 DOI: 10.1021/jm9015763] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new aporphine analogues were synthesized and pharmacologically evaluated. 11-Allyloxy-(17), 11-propargyloxy-(20), and dihydrofuro-(19) aporphines displayed the highest affinity at the 5-HT(1A) receptor with K(i) values of 12.0, 14.0, and 6.7 nM, respectively. The high binding potential of the diastereomeric mixture of aporphine 19 was found residing in the cis-diastereomer (cis-19). [(35)S]GTP gamma S function assays on 5-HT(1A) receptor indicated that aporphines 17 and 20 were partial agonists, while trans-19 behaved as a high efficacy full antagonist and cis-19 was a full agonist. The agonistic property of cis-19 at the 5-HT(1A) receptor was further confirmed in vitro and in vivo. This compound may be useful as a potential treatment for anxiety.
Collapse
Affiliation(s)
- Zhili Liu
- Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sipos A, Mueller FKU, Lehmann J, Berényi S, Antus S. Synthesis and Pharmacological Evaluation of Thiazole and Isothiazole Derived Apomorphines. Arch Pharm (Weinheim) 2009; 342:557-68. [DOI: 10.1002/ardp.200900100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Synthesis of 6-substituted 1-phenylbenzazepines and their dopamine D1 receptor activities. Bioorg Med Chem 2008; 16:9425-31. [DOI: 10.1016/j.bmc.2008.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
|
17
|
Liu Z, Chen X, Sun P, Yu L, Zhen X, Zhang A. N-Propylnoraporphin-11-O-yl carboxylic esters as potent dopamine D2 and serotonin 5-HT1A receptor dual ligands. Bioorg Med Chem 2008; 16:8335-8. [DOI: 10.1016/j.bmc.2008.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
|