1
|
Highly Efficient Synthesis of Cinnamamides from Methyl Cinnamates and Phenylethylamines Catalyzed by Lipozyme® TL IM under Continuous-Flow Microreactors. Catalysts 2022. [DOI: 10.3390/catal12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While a few derivatives of cinnamamides exhibited anti-inflammatory and/ or analgesic activity, in this study, we developed a highly efficient method for the synthesis of cinnamamides from methyl cinnamates and phenylethylamines catalyzed by Lipozyme® TL IM in continuous-flow microreactors. The reaction parameters and broad substrate range of the new method was studied. Maximum conversion (91.3%) was obtained under the optimal condition of substrate molar ratio of 1:2 (methyl 4-chlorocinnamate: phenylethylamine) at 45 °C for about 40 min. The remarkable features of this work include short residence time, mild reaction conditions, easy control of the reaction process, and that the catalyst can be recycled or reused, which provide a rapid and economical strategy for the synthesis and design of cinnamamide derivatives for further research on drug activity.
Collapse
|
2
|
Djokovic N, Ruzic D, Rahnasto-Rilla M, Srdic-Rajic T, Lahtela-Kakkonen M, Nikolic K. Expanding the Accessible Chemical Space of SIRT2 Inhibitors through Exploration of Binding Pocket Dynamics. J Chem Inf Model 2022; 62:2571-2585. [PMID: 35467856 DOI: 10.1021/acs.jcim.2c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considerations of binding pocket dynamics are one of the crucial aspects of the rational design of binders. Identification of alternative conformational states or cryptic subpockets could lead to the discovery of completely novel groups of the ligands. However, experimental characterization of pocket dynamics, besides being expensive, may not be able to elucidate all of the conformational states relevant for drug discovery projects. In this study, we propose the protocol for computational simulations of sirtuin 2 (SIRT2) binding pocket dynamics and its integration into the structure-based virtual screening (SBVS) pipeline. Initially, unbiased molecular dynamics simulations of SIRT2:inhibitor complexes were performed using optimized force field parameters of SIRT2 inhibitors. Time-lagged independent component analysis (tICA) was used to design pocket-related collective variables (CVs) for enhanced sampling of SIRT2 pocket dynamics. Metadynamics simulations in the tICA eigenvector space revealed alternative conformational states of the SIRT2 binding pocket and the existence of a cryptic subpocket. Newly identified SIRT2 conformational states outperformed experimentally resolved states in retrospective SBVS validation. After performing prospective SBVS, compounds from the under-represented portions of the SIRT2 inhibitor chemical space were selected for in vitro evaluation. Two compounds, NDJ18 and NDJ85, were identified as potent and selective SIRT2 inhibitors, which validated the in silico protocol and opened up the possibility for generalization and broadening of its application. The anticancer effects of the most potent compound NDJ18 were examined on the triple-negative breast cancer cell line. Results indicated that NDJ18 represents a promising structure suitable for further evaluation.
Collapse
Affiliation(s)
- Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Minna Rahnasto-Rilla
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | | | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
3
|
Padrosa DR, Contente ML. Multi-gram preparation of cinnamoyl tryptamines as skin whitening agents through a chemo-enzymatic flow process. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
5
|
Nagy L, Béke F, Juhász L, Kovács T, Juhász-Tóth É, Docsa T, Tóth A, Gergely P, Somsák L, Bai P. Glycogen phosphorylase inhibitor, 2,3-bis[(2E)-3-(4-hydroxyphenyl)prop-2-enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells. PLoS One 2020; 15:e0236081. [PMID: 32960890 PMCID: PMC7508380 DOI: 10.1371/journal.pone.0236081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of β cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of β cells. The purpose of this study was to assess whether an analogue of FR258900 can influence β cell function. BF142 (Meso-Dimethyl 2,3-bis[(E)-3-(4-acetoxyphenyl)prop-2-enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence β cell function and can support the insulin producing ability of β cells.
Collapse
Affiliation(s)
- Lilla Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Béke
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Juhász
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Juhász-Tóth
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
6
|
Eren G, Bruno A, Guntekin-Ergun S, Cetin-Atalay R, Ozgencil F, Ozkan Y, Gozelle M, Kaya SG, Costantino G. Pharmacophore modeling and virtual screening studies to identify novel selective SIRT2 inhibitors. J Mol Graph Model 2019; 89:60-73. [DOI: 10.1016/j.jmgm.2019.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
7
|
Khanfar MA, Taha MO. Unsupervised pharmacophore modeling combined with QSAR analyses revealed novel low micromolar SIRT2 inhibitors. J Mol Recognit 2017; 30. [PMID: 28299833 DOI: 10.1002/jmr.2623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022]
Abstract
Situin 2 (SIRT2) enzyme is a histone deacetylase that has important role in neuronal development. SIRT2 is clinically validated target for neurodegenerative diseases and some cancers. In this study, exhaustive unsupervised pharmacophore modeling was combined with quantitative structure-activity relationship (QSAR) analysis to explore the structural requirements for potent SIRT2 inhibitors using 146 known SIRT2 ligands. A computational workflow that combines genetic function algorithm with k-nearest neighbor or multiple linear regression was implemented to build self-consistent and predictive QSAR models based on combinations of pharmacophores and physicochemical descriptors. Successful pharmacophores were complemented with exclusion spheres to optimize their receiver operating characteristic curve profiles. Optimal QSAR models and their associated pharmacophore hypotheses were experimentally validated by identification and in vitro evaluation of several new promising SIRT2 inhibitory leads retrieved from the National Cancer Institute structural database. The most potent hit illustrated IC50 value of 5.4μM. The chemical structures of active hits were validated by proton nuclear magnetic resonance and mass spectroscopy.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Univerity of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Drug Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
8
|
De Vita D, Simonetti G, Pandolfi F, Costi R, Di Santo R, D'Auria FD, Scipione L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg Med Chem Lett 2016; 26:5931-5935. [PMID: 27838185 DOI: 10.1016/j.bmcl.2016.10.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Some compounds, characterized by phenylethenyl moiety, such as methyl cinnamate and caffeic acid phenethyl ester, are able to inhibit C. albicans biofilm formation. On these bases, and as a consequence of our previous work, we synthesized a series of cinnamoyl ester and amide derivatives in order to evaluate them for the activity against C. albicans biofilm and planktonically grown cells. The most active compounds 7 and 8 showed ⩾50% biofilm inhibition concentrations (BMIC50) of 2μg/mL and 4μg/mL respectively, against C. albicans biofilm formation; otherwise, 7 showed an interesting activity also against mature biofilm, with BMIC50 of 8μg/mL.
Collapse
Affiliation(s)
- Daniela De Vita
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabiana Pandolfi
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy; "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy; "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Felicia Diodata D'Auria
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luigi Scipione
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy.
| |
Collapse
|
9
|
Pakhare D, Kusurkar R. Application of Horner–Wadsworth–Emmons olefination for the synthesis of granulatamide A, its E isomer and other amides of tryptamine. NEW J CHEM 2016. [DOI: 10.1039/c5nj03533c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Horner–Wadsworth–Emmons (HWE) Z-selective olefination was used for the first synthesis of a naturally occurring cytotoxic tryptamine derivative, granulatamide A. The E-isomer of granulatamide A and two other tryptamine derived amides were synthesized by E-selective HWE olefination.
Collapse
Affiliation(s)
- Deepali Pakhare
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune – 411 007
- India
| | - Radhika Kusurkar
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune – 411 007
- India
| |
Collapse
|
10
|
Khanfar MA, Quinti L, Wang H, Nobles J, Kazantsev AG, Silverman RB. Design and Evaluation of 3-(Benzylthio)benzamide Derivatives as Potent and Selective SIRT2 Inhibitors. ACS Med Chem Lett 2015; 6:607-11. [PMID: 26005542 DOI: 10.1021/acsmedchemlett.5b00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023] Open
Abstract
Inhibitors of sirtuin-2 (SIRT2) deacetylase have been shown to be protective in various models of Huntington's disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathology. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the 3-(benzylsulfonamido)benzamide scaffold and improving their metabolic stability. Molecular modeling and docking studies revealed an unfavorable role of the sulfonamide moiety for SIRT2 binding. This prompted us to replace the sulfonamide with thioether, sulfoxide, or sulfone groups. The thioether analogues were the most potent SIRT2 inhibitors with a two- to three-fold increase in potency relative to their corresponding sulfonamide analogues. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. Two thioether-derived compounds (17 and 18) increased α-tubulin acetylation in a dose-dependent manner in at least one neuronal cell line, and 18 was found to inhibit polyglutamine aggregation in PC12 cells.
Collapse
Affiliation(s)
- Mohammad A. Khanfar
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| | - Luisa Quinti
- Department
of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts 02129-4404, United States
| | - Hua Wang
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Johnathan Nobles
- Department
of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts 02129-4404, United States
| | - Aleksey G. Kazantsev
- Department
of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts 02129-4404, United States
| | - Richard B. Silverman
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
11
|
Chuang YC, Chang CH, Lin JT, Yang CN. Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure-activity relationship analysis and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 11:723-33. [PMID: 25502412 DOI: 10.1039/c4mb00620h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sirtuin 2 (SIRT2) is a nicotinamide-adenine-dinucleotide-dependent histone deacetylase that plays a vital role in various biological processes related to DNA regulation, metabolism, and longevity. Recent studies on SIRT2 have indicated its therapeutic potential for neurodegenerative diseases such as Parkinson's disease. In this study, a series of SIRT2 inhibitors with a 2-anilinobenzamide core was analysed using a combination of molecular modelling techniques. A three-dimensional structure-activity relationship (3D-QSAR) model adopting a comparative molecular field analysis (CoMFA) method with a non-cross-validated correlation coefficient R(2) = 0.992 (for training set) and a correlation coefficient Rtest(2) = 0.804 (for test set) was generated to determine the structural requirements for inhibitory activity. Furthermore, we employed molecular dynamics (MD) simulations and the molecular mechanics/generalized Born surface area (MM/GBSA) method to compare the binding modes of a potent and selective compound interacting with SIRT1, SIRT2, and SIRT3 and also their binding free energies to shed light on the selectivity of the footing of structural and energetic investigations. The steric and electrostatic contour maps from the 3D-QSAR analysis identified several key interactions also observed in the MD simulations. According to these results, we provide guidelines for developing novel potent and selective SIRT2 inhibitors.
Collapse
Affiliation(s)
- Yu-Chung Chuang
- Department of Life Sciences, National University of Kaohsiung, 700, Kaohsiung University Road, Nan-Tzu District 811, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
12
|
Sakkiah S, Thangapandian S, Park C, Son M, Lee KW. Molecular docking and dynamics simulation, receptor-based hypothesis: application to identify novel sirtuin 2 inhibitors. Chem Biol Drug Des 2012; 80:315-27. [PMID: 22564257 DOI: 10.1111/j.1747-0285.2012.01406.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sirtuin, NAD(+)-dependent histone deacetylase enzyme, emerged as a potential therapeutic target, and modulations by small molecules could be effective drugs for various diseases. Owing to the absence of complex structure of sirtuin 2 (SIRT2), sirtinol was docked in the NAD(+) binding site and subjected to 5-nseconds molecular dynamics (MD) simulation. LigandScout was used to develop hypotheses based on 3-representative SIRT2 complex structures from MD. Three structure-based hypotheses are generated and merged to form dynamics hypothesis. The dynamics hypothesis was validated using test and decoy sets. The results showed that dynamic hypothesis represents the complementary features of SIRT2 active site. Dynamic hypothesis was used to screen ChemDiv database, and hits were filtered through ADMET, rule of five, and two different molecular docking studies. Finally, 21 molecules were selected as potent leads based on consensus score from LigandFit, Gold fitness score, binding affinity from VINA as well as based on the important interactions with critical residues in SIRT2 active site. Hence, we suggest that the dynamic hypothesis will be reliable in the identification of SIRT2 new lead as well as to reduce time and cost in the drug discovery process.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju 660-701, Korea
| | | | | | | | | |
Collapse
|
13
|
Choi SH, Quinti L, Kazantsev AG, Silverman RB. 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2). Bioorg Med Chem Lett 2012; 22:2789-93. [PMID: 22446090 DOI: 10.1016/j.bmcl.2012.02.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Inhibition of sirtuin 2 (SIRT2) is known to be protective against the toxicity of disease proteins in Parkinson's and Huntington's models of neurodegeneration. Previously, we developed SIRT2 inhibitors based on the 3-(N-arylsulfamoyl)benzamide scaffold, including3-(N-(4-bromophenyl)sulfamoyl)-N-(4-bromophenyl)benzamide(C2-8, 1a), which demonstrated neuroprotective effects in a Huntington's mouse model, but had low potency of SIRT2 inhibition. Here we report that N-methylation of 1a greatly increases its potency and results in excellent selectivity for SIRT2 over SIRT1 and SIRT3 isoforms. Structure-activity relationships observed for 1a analogs and docking simulation data suggest that the para-substituted amido moiety of these compounds could occupy two potential hydrophobic binding pockets in SIRT2. These results provide a direction for the design of potent drug-like SIRT2 inhibitors.
Collapse
Affiliation(s)
- Soo Hyuk Choi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | | | | | | |
Collapse
|
14
|
Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bottegoni G, Rocchia W, Cavalli A. Application of conformational clustering in protein-ligand docking. Methods Mol Biol 2012; 819:169-186. [PMID: 22183537 DOI: 10.1007/978-1-61779-465-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-Ligand docking is a powerful technique routinely employed in structure-based drug design. Despite many reported success stories, docking is not always able to provide an accurate and easily interpretable prediction of the structure of the bound complex formed by a small organic molecule and a pharmacologically relevant target. Cluster analysis can represent a versatile and readily available postprocessing tool to be employed in combination with protein-ligand docking to simplify the evaluation of the results and help to overcome present limitations of docking protocols.
Collapse
Affiliation(s)
- Giovanni Bottegoni
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
16
|
Pehere AD, Abell AD. An improved large scale procedure for the preparation of N-Cbz amino acids. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M, Bruijn T, Jääskeläinen S, Poso A, Salminen A, Leppänen J, Jarho E. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2. Bioorg Med Chem 2010; 18:5616-25. [PMID: 20630764 DOI: 10.1016/j.bmc.2010.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Sirtuins catalyze the NAD(+) dependent deacetylation of N(epsilon)-acetyl lysine residues to nicotinamide, O'-acetyl-ADP-ribose (OAADPR) and N(epsilon)-deacetylated lysine. Here, an easy-to-synthesize Ac-Ala-Lys-Ala sequence has been used as a probe for the screening of novel N(epsilon)-modified lysine containing inhibitors against SIRT1 and SIRT2. N(epsilon)-Selenoacetyl and N(epsilon)-isothiovaleryl were the most potent moieties found in this study, comparable to the widely studied N(epsilon)-thioacetyl group. The N(epsilon)-3,3-dimethylacryl and N(epsilon)-isovaleryl moieties gave significant inhibition in comparison to the N(epsilon)-acetyl group present in the substrates. In addition, the studied N(epsilon)-alkanoyl, N(epsilon)-alpha,beta-unsaturated carbonyl and N(epsilon)-aroyl moieties showed that the acetyl binding pocket can accept rather large groups, but is sensitive to even small changes in electronic and steric properties of the N(epsilon)-modification. These results are applicable for further screening of N(epsilon)-acetyl analogues.
Collapse
Affiliation(s)
- Tero Huhtiniemi
- School of Pharmacy, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cen Y. Sirtuins inhibitors: the approach to affinity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1635-44. [PMID: 19931429 DOI: 10.1016/j.bbapap.2009.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has indicated the importance of sirtuins (class III histone deacetylases) in various biological processes. Their potential roles in metabolic and neurodegenerative diseases have encouraged scientists to seek potent and selective sirtuin inhibitors to investigate their biological functions with a view to eventual new therapeutic treatments. This article surveys current knowledge of sirtuin inhibitors including those discovered via high-throughput screening (HST) or via mechanism-based drug design from synthetic or natural sources. Their inhibitory affinity, selectivities, and possible inhibition mechanisms are discussed.
Collapse
Affiliation(s)
- Yana Cen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
19
|
Medda F, Russell RJM, Higgins M, McCarthy AR, Campbell J, Slawin AMZ, Lane DP, Lain S, Westwood NJ. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem 2009; 52:2673-82. [PMID: 19419202 DOI: 10.1021/jm8014298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tenovins and cambinol are two classes of sirtuin inhibitor that exhibit antitumor activity in preclinical models. This report describes modifications to the core structure of cambinol, in particular by incorporation of substituents at the N1-position, which lead to increased potency and modified selectivity. These improvements have been rationalized using molecular modeling techniques. The expected functional selectivity in cells was also observed for both a SIRT1 and a SIRT2 selective analog.
Collapse
Affiliation(s)
- Federico Medda
- School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. CHEMISTRY & BIOLOGY 2008; 15:1002-13. [PMID: 18940661 PMCID: PMC2626554 DOI: 10.1016/j.chembiol.2008.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/08/2008] [Accepted: 09/17/2008] [Indexed: 12/12/2022]
Abstract
Sirtuins are critical regulators of many cellular processes, including insulin secretion, the cell cycle, and apoptosis. Sirtuins are associated with a variety of age-associated diseases such as type II diabetes, obesity, and Alzheimer's disease. A thorough understanding of sirtuin chemical mechanisms will aid toward developing novel therapeutics that regulate metabolic disorders and combat associated diseases. In this review, we discuss the unique deacetylase mechanism of sirtuins and how this information might be employed to develop inhibitors and other molecular probes for therapeutic and basic research applications. We also cover physiological regulation of sirtuin activity and how these modes of regulation may be exploited to manipulate sirtuin activity in live cells. Development of molecular probes and drugs that specifically target sirtuins will further understanding of sirtuin biology and potentially afford new treatments of several human diseases.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - William C. Hallows
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - John M. Denu
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| |
Collapse
|