1
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
3
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
4
|
Akıncıoğlu A. Design, synthesis, in silico, and in vitro evaluation of novel benzyloxybenzene substituted (S)-α-amino amide derivatives as cholinesterases and monoaminoxidases inhibitor. Drug Dev Res 2024; 85:e22161. [PMID: 38445811 DOI: 10.1002/ddr.22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
- Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
5
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
6
|
Drozdowska D, Maliszewski D, Wróbel A, Ratkiewicz A, Sienkiewicz M. New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking. Int J Mol Sci 2023; 24:14901. [PMID: 37834347 PMCID: PMC10573752 DOI: 10.3390/ijms241914901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of eleven new and previously undescribed benzamides was designed. These compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and β-secretase (BACE1). N,N'-(1,4-phenylene)bis(3-methoxybenzamide) was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. Quantitative results identified this derivative to be the most promising. Molecular modeling was performed to elucidate the potential mechanism of action of this compound. Dynamic simulations showed that new ligands only had a limited stabilizing effect on AChE, but all clearly reduced the flexibility of the enzyme. It can, therefore, be concluded that a possible mechanism of inhibition increases the stiffness and decreases the flexibility of the enzyme, which obviously impedes its proper function. An analysis of the H-bonding patterns suggests a different mechanism (from other ligands) when interacting the most active derivative with the enzyme.
Collapse
Affiliation(s)
- Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Artur Ratkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (A.R.); (M.S.)
| | - Michał Sienkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (A.R.); (M.S.)
| |
Collapse
|
7
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
8
|
Kumar N, Gupta P, Bansal S. Progress and Development of Carbazole Scaffold Based as Potential Anti-
Alzheimer Agents Using MTDL Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220314144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer’s is a neurodegenerative disease (NDs) found in old age people with associated
most common symptom dementia. MTDLs (Multi-Target Direct Ligand strategy) is based on a combination
of two or more bioactive pharmacophores into a single molecule and this phenomenon has received a
great attention in the new era of modern drug discovery and emerging as a choice to treat this complex
Alzheimer’s disease (AD). In last fifteen years, many research groups designed, and synthesized new
carbazole integrated molecules linked with other bioactive pharmacophores like thiazoles, carvedilol, α-
naphthylaminopropan-2-ol, tacrine, ferulic acid, piperazine, coumarin, chalcones, stilbene, benzyl piperidine,
adamantane, quinoline, phthalocyanines, α-amino phosphonate, thiosemicarbazones, hydrazones,
etc. derivatives using MTDLs approach to confront AD. The present review entails the scientific data on
carbazole hybrids as potential Anti-Alzheimer activities from 2007 to 2021 that have shown potential
anti-Alzheimer activities through multiple target pathways thereby promising hope for new drug development
to confront AD.
Collapse
Affiliation(s)
- Nitin Kumar
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
- Sanskar College of Pharmacy and Research (SCPR), NH-24, Ahead Masuri Canal, Ghaziabad 201302, India
| | - Pankaj Gupta
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
| | - Sahil Bansal
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
| |
Collapse
|
9
|
Paramanick D, Singh VD, Singh VK. Neuroprotective effect of phytoconstituents via nanotechnology for treatment of Alzheimer diseases. J Control Release 2022; 351:638-655. [DOI: 10.1016/j.jconrel.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
|
10
|
Karimian S, Shekouhy M, Pirhadi S, Iraji A, Attarroshan M, Edraki N, Khoshneviszadeh M. Synthesis and biological evaluation of benzimidazoles/1,3,5-triazine-2,4-diamine hybrid compounds: a new class of multifunctional alzheimer targeting agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twelve novel benzimidazole/1,3,5-triazine-2,4-diamine hybrids were synthesized and biologically studied as multifunctional Alzheimer-controlling agents.
Collapse
Affiliation(s)
- Somaye Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Stefaniak M, Olszewska B. 1,5-Benzoxazepines as a unique and potent scaffold for activity drugs: A review. Arch Pharm (Weinheim) 2021; 354:e2100224. [PMID: 34368985 DOI: 10.1002/ardp.202100224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/09/2022]
Abstract
Benzoxazepines constitute a huge number of organic compounds widely described in the literature. Many of them are distinguished by their biological properties. Among them, our attention was drawn to 1,5-benzoxazepine derivatives due to their interesting pharmacological properties. As is reported in the literature, these compounds are not only good building blocks in organic synthesis but also have interesting biological and pharmacological properties. This article is the first review publication to describe the synthesis methods and unique properties of 1,5-benzoxazepines. Literature reports widely describe the biological properties of 1,5-benzoxazepine, like anticancer, antibacterial, or antifungal activities. 1,5-Benzoxazepine derivatives can also interact with G-protein-coupled receptors and could be incorporated into new potential drugs, among others, in treating neuronal disorders like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Monika Stefaniak
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| | - Beata Olszewska
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
12
|
Dual-target compounds for Alzheimer's disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 2021; 221:113492. [PMID: 33984802 DOI: 10.1016/j.ejmech.2021.113492] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and represents the major cause of dementia worldwide. Currently, there are no available treatments capable to deliver disease-modifying effects, and the available drugs can only alleviate the symptoms. The exact pathology of AD is not yet fully understood and several hallmarks such as the presence of amyloid-β (Aβ) senile plaques, neurofibrillary tangles (NFTs) as well as the loss of cholinergic function have been associated to AD. Distinct pharmacological targets have been validated to address AD, with acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) being two of the most explored ones. A great deal of research has been devoted to the development of new AChE and BACE-1 effective inhibitors, tackled separately or in combination of both. The multi-factorial nature of AD conducted to the development of multi-target directed ligands (MTDLs), defined as single molecules capable to modulate more than one biological target, as an alternative approach to the old paradigm one-target one-drug. In this context, this review describes a collection of natural and synthetic compounds with dual-inhibitory properties towards both AChE and BACE-1 in the MTDLs context. Furthermore, this review also provides a critical comprehensive analysis of structure-activity relationships (SAR) of the synthetic compounds.
Collapse
|
13
|
Sadeghian B, Sakhteman A, Faghih Z, Nadri H, Edraki N, Iraji A, Sadeghian I, Rezaei Z. Design, synthesis and biological activity evaluation of novel carbazole-benzylpiperidine hybrids as potential anti Alzheimer agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Kumar V, Saha A, Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer's disease. Comput Biol Chem 2020; 88:107355. [PMID: 32801088 DOI: 10.1016/j.compbiolchem.2020.107355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023]
Abstract
In this research, we have implemented two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling using two different datasets, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibitors. A third dataset has been derived based on their selectivity and used for the development of partial least squares (PLS) based regression models. The developed models were extensively validated using various internal and external validation parameters. The features appearing in the model against AChE enzyme suggest that a small ring size, higher number of -CH2- groups, higher number of secondary aromatic amines and higher number of aromatic ketone groups may contribute to the inhibitory activity. The features obtained from the model against BuChE enzyme suggest that the sum of topological distances between two nitrogen atoms, higher number of fragments X-C(=X)-X, higher number of secondary aromatic amides, fragment R--CR-X may be more favorable for inhibition. The features obtained from selectivity based model suggest that the number of aromatic ethers, unsaturation content relative to the molecular size and molecular shape may be more specific for the inhibition of the AChE enzyme in comparison to the BuChE enzyme. Moreover, we have implemented the molecular docking studies using the most and least active molecules from the datasets in order to identify the binding pattern between ligand and target enzyme. The obtained information is then correlated with the essential structural features associated with the 2D-QSAR models.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
16
|
Kabir MT, Uddin MS, Begum MM, Thangapandiyan S, Rahman MS, Aleya L, Mathew B, Ahmed M, Barreto GE, Ashraf GM. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2020; 25:3519-3535. [PMID: 31593530 DOI: 10.2174/1381612825666191008103141] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Mohsin NUA, Ahmad M. Donepezil: A review of the recent structural modifications and their impact on anti-Alzheimer activity. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
18
|
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. Int J Mol Sci 2019; 20:E5090. [PMID: 31615073 PMCID: PMC6834216 DOI: 10.3390/ijms20205090] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.
Collapse
Affiliation(s)
- Sudip Dhakal
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Naufal Kushairi
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chia Wei Phan
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
19
|
Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 2019; 176:228-247. [DOI: 10.1016/j.ejmech.2019.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
20
|
Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules 2018; 23:molecules23123252. [PMID: 30544832 PMCID: PMC6321525 DOI: 10.3390/molecules23123252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
A series of 22 donepezil analogues were synthesized through alkylation/benzylation and compared to donepezil and its 6-O-desmethyl adduct. All the compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes responsible for the hydrolysis of the neurotransmitter acetylcholine in Alzheimer’s disease patient brains. Many of them displayed lower inhibitory concentrations of EeAChE (IC50 = 0.016 ± 0.001 µM to 0.23 ± 0.03 µM) and EfBChE (IC50 = 0.11 ± 0.01 µM to 1.3 ± 0.2 µM) than donepezil. One of the better compounds was tested against HsAChE and was found to be even more active than donepezil and inhibited HsAChE better than EeAChE. The analogues with the aromatic substituents were generally more potent than the ones with aliphatic substituents. Five of the analogues also inhibited the action of β-secretase (BACE1) enzyme.
Collapse
|
21
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
22
|
Uddin I, Taha M, Rahim F, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorg Chem 2018; 78:324-331. [DOI: 10.1016/j.bioorg.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
|
23
|
Gong CX, Liu F, Iqbal K. Multifactorial Hypothesis and Multi-Targets for Alzheimer’s Disease. J Alzheimers Dis 2018; 64:S107-S117. [DOI: 10.3233/jad-179921] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
24
|
Chufarova N, Czarnecka K, Skibiński R, Cuchra M, Majsterek I, Szymański P. New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2018; 351:e1800050. [DOI: 10.1002/ardp.201800050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Nina Chufarova
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| | - Kamila Czarnecka
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| | - Robert Skibiński
- Faculty of Pharmacy, Department of Medicinal Chemistry; Medical University of Lublin; Lublin Poland
| | - Magda Cuchra
- Department of Clinical Chemistry and Biochemistry; Medical University of Lodz; Lodz Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry; Medical University of Lodz; Lodz Poland
| | - Paweł Szymański
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| |
Collapse
|
25
|
Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:42-73. [PMID: 29248451 DOI: 10.1016/j.jep.2017.12.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD), a deleterious neurodegenerative disorder that impairs memory, cognitive functions and may lead to dementia in late stage of life. The pathogenic cause of AD remains incompletely understood and FDA approved drugs are partial inhibitors rather than curative. Most of drugs are synthetic or natural products as galanthamine is an alkaloid obtained from Galanthus spp. Huperzine A, an alkaloid found in Huperzia spp., gingkolides a diterpenoids from Gingko biloba and many ethnobotanicals like Withania somnifera (L.) Dunal., Physostigma venenosum Balf., Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urb. have been used by traditional Indian, Chinese, and European system of medicines in AD. Clinical significance opioid alkaloid in Papaver somniferum has shown another dimension to this study. Over exploitation of medicinal plants with limited bioactive principles has provided templates to design synthetic drugs in AD e.g. rivastigmine, phenserine, eptastigmine based on chemical structure of physostigmine of Physostigma venenosum Balf. Even ZT-1 a prodrug of Hup A and memogain a prodrug of galantamine has achieved new direction in drug development in AD. All these first-line cholinesterase-inhibitors are used as symptomatic treatments in AD. Single modality of "One-molecule-one-target" strategy for treating AD has failed and so future therapies on "Combination-drugs-multi-targets" strategy (CDMT) will need to address multiple aspects to block the progression of pathogenesis of AD. Besides, cholinergic and amyloid drugs, in this article we summarize proteinopathy-based drugs as AD therapeutics from a variety of biological sources. In this review, an attempt has been made to elucidate the molecular mode of action of various plant products, and synthetic drugs investigated in various preclinical and clinical tests in AD. It also discusses current attempts to formulate a comprehensive CDMT strategy to counter complex pathogenesis in AD. MATERIALS AND METHODS Information were collected from classical books on medicinal plants, pharmacopoeias and scientific databases like PubMed, Scopus, GoogleScholar, Web of Science and electronic searches were performed using Cochrane Library, Medline and EMBASE. Also published scientific literatures from Elsevier, Taylor and Francis, Springer, ACS, Wiley publishers and reports by government bodies and documentations were assessed. RESULTS 60 no. of natural and synthetic drugs have been studied with their significant bioactivities. A decision matrix designed for evaluation of drugs for considering to the hypothetic "CDMT" strategy in AD. We have introduced the scoring pattern of individual drugs and based on scoring pattern, drugs that fall within the scoring range of 18-25 are considered in the proposed CDMT. It also highlights the importance of available natural products and in future those drugs may be considered in CDMT along with the qualified synthetic drugs. CONCLUSION A successful validation of the CDMT strategy may open up a debate on health care reform to explore other possibilities of combination therapy. In doing so, it should focus on clinical and molecular relationships between AD and CDMT. A better understanding of these relationships could inform and impact future development of AD-directed treatment strategies. This strategy also involves in reducing costs in treatment phases which will be affordable to a common man suffering from AD.
Collapse
Affiliation(s)
- Atish Kumar Sahoo
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India.
| | - Jagnehswar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, India
| | - Umesh Chandra Dash
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| | - Satish Kanhar
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| |
Collapse
|
26
|
Kumar A, Tiwari A, Sharma A. Changing Paradigm from one Target one Ligand Towards Multi-target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of In Silico Methods in Multi-target Directed Ligands Design. Curr Neuropharmacol 2018; 16:726-739. [PMID: 29542413 PMCID: PMC6080096 DOI: 10.2174/1570159x16666180315141643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/01/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis does not provide complete solution of AD due to multifactorial nature of the disease and one target one drug fails to provide better treatment against AD. Moreover, currently available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So, the current AD drug discovery research is shifting towards a new approach for a better solution that simultaneously modulates more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs". Drug discovery project is a tedious, costly and long-term project. Moreover, multi-target AD drug discovery added extra challenges such as the good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off-target side effect and crossing of the blood-brain barrier. These hurdles may be addressed by insilico methods for an efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here, we are summarizing some of the most prominent and computationally explored single targets against AD and further, we discussed a successful example of dual or multiple inhibitors for same targets. Moreover, we focused on ligand and structure-based computational approach to design MTDL against AD. However, it is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy is useful in future MTDLs drug discovery alone or in combination with a fragment-based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug discovery and play an important role in optimizing multi-target drug discovery.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashish Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| |
Collapse
|
27
|
Zhang C, Gomes LM, Zhang T, Storr T. A small bifunctional chelator that modulates Aβ42 aggregation. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multifunctional compounds that can modulate amyloid-β (Aβ) aggregation and interact with metal ions hold considerable promise as therapeutic agents for Alzheimer’s disease (AD). Using the copper-catalyzed azide-alkyne cycloaddition reaction, a novel bifunctional chelator 2-(1-(4-(dimethylamino)benzyl)-1H-1,2,3-triazol-4-yl)phenol (L1) was synthesized. L1 contains a bidentate metal-binding unit and a pendant dimethylamino moiety. The product was characterized by 1H NMR, 13C NMR, and MS. The metal-binding properties of L1 were probed by UV–vis spectroscopy to determine Cu:L stoichiometry. L1 was determined to limit Aβ aggregation at 48 h via a ThT assay. In addition, L1 complies with Lipinski’s rules and calculated logBB values for potential drug likeness and BBB permeability. These results suggest that L1 is a suitable candidate for further study as a multifunctional compound to treat AD.
Collapse
Affiliation(s)
- Chaofeng Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Luiza M.F. Gomes
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Tonglu Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Sehgal SA, Hammad MA, Tahir RA, Akram HN, Ahmad F. Current Therapeutic Molecules and Targets in Neurodegenerative Diseases Based on in silico Drug Design. Curr Neuropharmacol 2018; 16:649-663. [PMID: 29542412 PMCID: PMC6080102 DOI: 10.2174/1570159x16666180315142137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/01/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As the number of elderly persons increases, neurodegenerative diseases are becoming ubiquitous. There is currently a great need for knowledge concerning management of oldage neurodegenerative diseases; the most important of which are: Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease. OBJECTIVE To summarize the potential of computationally predicted molecules and targets against neurodegenerative diseases. METHOD Review of literature published since 1997 against neurodegenerative diseases, utilizing as keywords: in silico, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis ALS, and Huntington's disease was conducted. RESULTS AND CONCLUSION Due to the costs associated with experimentation and current ethical law, performing experiments directly on living organisms has become much more difficult. In this scenario, in silico techniques have been successful and have become powerful tools in the search to cure disease. Researchers use the Computer Aided Drug Design pipeline which: 1) generates 3- dimensional structures of target proteins through homology modeling 2) achieves stabilization through molecular dynamics simulation, and 3) exploits molecular docking through large compound libraries. Next generation sequencing is continually producing enormous amounts of raw sequence data while neuroimaging is producing a multitude of raw image data. To solve such pressing problems, these new tools and algorithms are required. This review elaborates precise in silico tools and techniques for drug targets, active molecules, and molecular docking studies, together with future prospects and challenges concerning possible breakthroughs in Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Address correspondence to this author at the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences; Beijing, China; E-mail:
| | | | | | | | | |
Collapse
|
29
|
Haghighijoo Z, Firuzi O, Hemmateenejad B, Emami S, Edraki N, Miri R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg Chem 2017; 74:126-133. [DOI: 10.1016/j.bioorg.2017.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/20/2023]
|
30
|
Prati F, Bottegoni G, Bolognesi ML, Cavalli A. BACE-1 Inhibitors: From Recent Single-Target Molecules to Multitarget Compounds for Alzheimer’s Disease. J Med Chem 2017; 61:619-637. [DOI: 10.1021/acs.jmedchem.7b00393] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Prati
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, College of Life
Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | - Giovanni Bottegoni
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
31
|
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy. Molecules 2017; 22:molecules22081265. [PMID: 28788095 PMCID: PMC6152224 DOI: 10.3390/molecules22081265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/29/2022] Open
Abstract
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer’s disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors—THA and (−)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.
Collapse
|
32
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
33
|
Liu Z, Zhang A, Sun H, Han Y, Kong L, Wang X. Two decades of new drug discovery and development for Alzheimer's disease. RSC Adv 2017. [DOI: 10.1039/c6ra26737h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease is a progressive and irreversible neurodegenerative disease, associated with a decreased cognitive function and severe behavioral abnormalities.
Collapse
Affiliation(s)
- Zhidong Liu
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Aihua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Ying Han
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Ling Kong
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Xijun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| |
Collapse
|
34
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
35
|
Integration of common feature pharmacophore modeling and
in vitro study to identify potent AChE inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1716-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
37
|
Domínguez JL, Fernández-Nieto F, Brea JM, Catto M, Paleo MR, Porto S, Sardina FJ, Castro M, Pisani L, Carotti A, Soto-Otero R, Méndez-Alvarez E, Villaverde MC, Sussman F. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as Multitarget Leads for Alzheimer's Disease. ChemistrySelect 2016. [DOI: 10.1002/slct.201600735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- José L. Domínguez
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Fernando Fernández-Nieto
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José M. Brea
- Departamento de Farmacología; Instituto de Farmacia Industrial; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - M. Rita Paleo
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Silvia Porto
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - F. Javier Sardina
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Marian Castro
- Departamento de Farmacología; Instituto de Farmacia Industrial; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - Ramón Soto-Otero
- Grupo de Neuroquímica; Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Estefanía Méndez-Alvarez
- Grupo de Neuroquímica; Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - M. Carmen Villaverde
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Fredy Sussman
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
38
|
Costanzo P, Cariati L, Desiderio D, Sgammato R, Lamberti A, Arcone R, Salerno R, Nardi M, Masullo M, Oliverio M. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS Med Chem Lett 2016; 7:470-5. [PMID: 27190595 DOI: 10.1021/acsmedchemlett.5b00483] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.
Collapse
Affiliation(s)
- Paola Costanzo
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Luca Cariati
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Doriana Desiderio
- Dipartimento di Bioscienze e Territorio, Università del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Roberta Sgammato
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Anna Lamberti
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
| | - Rosaria Arcone
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Raffaele Salerno
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Monica Nardi
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 12 C, 87037 Arcavacata di Rende (CS), Italy
| | - Mariorosario Masullo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Manuela Oliverio
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| |
Collapse
|
39
|
Teimuri-Mofrad R, Nikbakht R, Gholamhosseini-Nazari M. A convenient and efficient method for the synthesis of new 2-(4-amino substituted benzilidine) indanone derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2549-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Advances in recent patent and clinical trial drug development for Alzheimer's disease. Pharm Pat Anal 2016; 3:429-47. [PMID: 25291315 DOI: 10.4155/ppa.14.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, involving a large number of genes, proteins and their complex interactions. Currently, no effective therapeutic agents are available to either stop or reverse the progression of this disease, likely due to its polygenic nature. The complicated pathophysiology of AD remains unresolved. Although it has been hypothesized that the amyloid β cascade and the hyper-phosphorylated tau protein may be primarily involved, other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitter, mitochondrial dysfunction and inflammation have also been implicated. The main focus of this review is to document current therapeutic agents in clinical trials and patented candidate compounds under development based on their main mechanisms of action. It also discusses the relationship between the recent understanding of key targets and the development of potential therapeutic agents for the treatment of AD.
Collapse
|
41
|
Al-Rashid ZF, Hsung RP. A computational view on the significance of E-ring in binding of (+)-arisugacin A to acetylcholinesterase. Bioorg Med Chem Lett 2015; 25:4848-4853. [PMID: 26159481 PMCID: PMC4670034 DOI: 10.1016/j.bmcl.2015.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/14/2023]
Abstract
A computational docking study of a series of de novo structural analogs of the highly potent, non-nitrogen containing, acetylcholinesterase inhibitor (+)-arisugacin A is presented. In direct comparison to the recently reported X-ray single-crystal structure of (+)-territrem B bound hAChE, the modeling suggests that there is a unique conformational preference for the E-ring that is responsible for the superior inhibitory activity of (+)-arisugacin A against hAChE relative to (+)-territrem B, and that substitutions on the E-ring also play an important role in the protein-ligand interaction.
Collapse
Affiliation(s)
- Ziyad F Al-Rashid
- Alchemical Research, LLC, 260 East Wall Street, Bethlehem, PA 18018, USA.
| | - Richard P Hsung
- Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.
Collapse
|
43
|
Meena P, Nemaysh V, Khatri M, Manral A, Luthra PM, Tiwari M. Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorg Med Chem 2015; 23:1135-48. [DOI: 10.1016/j.bmc.2014.12.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022]
|
44
|
Potent and selective MAO-B inhibitory activity: Amino- versus nitro-3-arylcoumarin derivatives. Bioorg Med Chem Lett 2015; 25:642-8. [DOI: 10.1016/j.bmcl.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022]
|
45
|
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease. Curr Med Chem 2015; 22:373-404. [PMID: 25386820 PMCID: PMC4435057 DOI: 10.2174/0929867321666141106122628] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Barbara Malawska
- Jagiellonian University, Medical College, Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, 30-688 Krakow, Medyczna 9, Poland.
| |
Collapse
|
46
|
Domínguez JL, Fernández-Nieto F, Castro M, Catto M, Paleo MR, Porto S, Sardina FJ, Brea JM, Carotti A, Villaverde MC, Sussman F. Computer-aided structure-based design of multitarget leads for Alzheimer's disease. J Chem Inf Model 2014; 55:135-48. [PMID: 25483751 DOI: 10.1021/ci500555g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease is a neurodegenerative pathology with unmet clinical needs. A highly desirable approach to this syndrome would be to find a single lead that could bind to some or all of the selected biomolecules that participate in the amyloid cascade, the most accepted route for Alzheimer disease genesis. In order to circumvent the challenge posed by the sizable differences in the binding sites of the molecular targets, we propose a computer-assisted protocol based on a pharmacophore and a set of required interactions with the targets that allows for the automated screening of candidates. We used a combination of docking and molecular dynamics protocols in order to discard nonbinders, optimize the best candidates, and provide a rationale for their potential as inhibitors. To provide a proof of concept, we proceeded to screen the literature and databases, a task that allowed us to identify a set of carbazole-containing compounds that initially showed affinity only for the cholinergic targets in our experimental assays. Two cycles of design based on our protocol led to a new set of analogues that were synthesized and assayed. The assay results revealed that the designed inhibitors had improved affinities for BACE-1 by more than 3 orders of magnitude and also displayed amyloid aggregation inhibition and affinity for AChE and BuChE, a result that led us to a group of multitarget amyloid cascade inhibitors that also could have a positive effect at the cholinergic level.
Collapse
Affiliation(s)
- José L Domínguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fang J, Wu P, Yang R, Gao L, Li C, Wang D, Wu S, Liu AL, Du GH. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B 2014; 4:430-7. [PMID: 26579414 PMCID: PMC4629110 DOI: 10.1016/j.apsb.2014.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023] Open
Abstract
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔEele+ΔGGB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AD, Alzheimer׳s disease
- Acetylcholinesterase (AChE)
- BuChE, butyrylcholinesterase
- BuSCh, S-butyrylthiocholine chloride
- CAS, catalytic active site
- DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid)
- G1, 3-(4-methoxyphenyl)-7-(2-(piperidin-1-yl)ethoxy)-4H-chromen-4-one
- G2, (S)-3-(4-methoxyphenyl)-7-(2-(2-methylpiperidin-1-yl)ethoxy)-4H-chromen-4-one
- GAFF, generalized AMBER force field
- Genistein derivatives
- Kinetics analysis
- MD, molecular dynamics
- MM/GBSA
- MM/GBSA, molecular mechanics/generalized born surface area
- Molecular docking
- Molecular dynamics simulation
- PAS, peripheral anionic site
- PDB, protein data bank
- PME, particle mesh Ewald
- RMSD, root-mean-square deviation
- S-ACh, acetylthiocholine iodide
- SASA, solvent accessible surface area
- iso-OMPA, tetraisopropyl pyrophosphoramide
- ΔEMM, gas-phase interaction energy between receptor and ligand
- ΔEele, electrostatic energy contribution
- ΔEvdw, van der Waals energy contribution
- ΔGGB, polar desolvation energy term
- ΔGSA, nonpolar desolvation energy term
- ΔGexp, experimental binding free energy
- ΔGpred, total binding free energy
- ΔS, conformational entropy contribution
Collapse
|
48
|
Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0931-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Wright JW, Kawas LH, Harding JW. A Role for the Brain RAS in Alzheimer's and Parkinson's Diseases. Front Endocrinol (Lausanne) 2013; 4:158. [PMID: 24298267 PMCID: PMC3829467 DOI: 10.3389/fendo.2013.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has available the necessary functional components to produce the active ligands angiotensins II (AngII), angiotensin III, angiotensins (IV), angiotensin (1-7), and angiotensin (3-7). These ligands interact with several receptor proteins including AT1, AT2, AT4, and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer's disease (AD) and Parkinson's disease (PD), as well as research efforts focused on the use of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogs capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. AngII and AngIV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogs in the treatment of animal models of AD and PD. These AngIV analogs act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Leen H. Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Joseph W. Harding
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| |
Collapse
|
50
|
Zou Y, Xu L, Chen W, Zhu Y, Chen T, Fu Y, Li L, Ma L, Xiong B, Wang X, Li J, He J, Zhang H, Xu Y, Li J, Shen J. Discovery of pyrazole as C-terminus of selective BACE1 inhibitors. Eur J Med Chem 2013; 68:270-83. [DOI: 10.1016/j.ejmech.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/26/2013] [Accepted: 06/06/2013] [Indexed: 02/08/2023]
|